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Abstract

Until now tools to visualise effects caused by the bending of light as predicted by

General Relativity are highly specialised software packages. In this thesis a different

approach is presented: a plug-in for a standard visualisation software (Maya), which

allows to simulate the bending of light. The implemented algorithm is based on an

approximation, which speeds up the rendering process, drastically.

Figure 1: Spacetime of Two Black Holes
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Chapter 1

Introduction

Figure 1.1: Albert Einstein

The year 2005 was celebrated as “The World Year

of Physics” and was dedicated to Albert Einstein.

Exactly 100 years ago, Albert Einstein wrote four

scientific papers, that were published within only

one year. They revolutionised the world of physics

and how we view the universe.

The first paper in this year (“Über einen die

Erzeugung und Verwandlung des Lichts betreffenden

heuristischen Gesichtspunkt”) explains the photo-

electric effect and the behaviour of light which can

be described as a stream of particles called pho-

tons as alternative to an electromagnetic wave. 1921 he was rewarded the Nobel

Price “for his services to Theoretical Physics, and especially for his discovery of the

law of the photoelectric effect” [Nob05].

The second paper (“Zur Elektrodynamik bewegter Körper”) describes what is

now known as Special Relativity.1 In this paper Einstein welded together time and

space to a combined four dimensional structure called spacetime. He realised that

time is not an absolute quantity but a relative one, depending on the observer. It

is important to add that his theory of Special Relativity was built upon work and

thoughts of others.

Because of these contributions, the year 1905 is now known as the “Annus

Mirabilis”2 of Einstein.

1The other two papers are: “Über die von der molekularkinetischen Theorie der Wärme

geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen” and “Ist die Trägheit

eines Körpers von seinem Energieinhalt abhängig?”
2latin for “miraculous year”

1



Rendering Black Holes in Maya 2

Figure 1.2: Arthur Eddington

Eleven years later Einstein published his work

on General Relativity (see [Ein16]), a theory he de-

veloped solely by himself3. General Relativity de-

scribes how mass and spacetime are correlated. An

important consequence is that light does not travel

along straight lines, but on curved paths because

it is bent by mass.

Arthur Eddington was the first who proved one

of Einstein’s purely theoretical predictions. During

a total eclipse in 1919 he took pictures of stars in

the region around the sun when they were clearly visibly. He observed that the stars

appeared to be shifted away from the sun’s centre, when compared to their positions

in the night sky. This effect and the amount of the shift was exactly predicted by

Einstein’s General Relativity. Figure 1.34 shows one of Eddington’s photographs,

taken on an island near Africa.

Figure 1.3: The Eclipse 1919

Nowadays modern computer graphics can be used

to visualise these distortion effects in artificial envi-

ronments. These tools have been developed by spe-

cialists mostly for scientific research and are not ac-

cessible to the general graphic artists or other end

users.

In my thesis I present a technique to create pic-

tures of 3D scenes incorporating the effect of bending

of light by masses. I implemented the technique as

a plug-in module for a commercial 3D-application,

so that the simulation of curved space becomes more

accessible.

The thesis is organised as follows: chapter 2 contains the theoretical background

necessary for the following chapter 3, which describes the main work. The last

chapter provides some thoughts about possible extensions and future work.

3He was supported by Marcel Grossmann on the mathematical aspects.
4Picture from [DED20]



Chapter 2

Theoretical Background

2.1 Bending of Light by Masses

2.1.1 General Relativity

An object that experiences acceleration due to a gravitational force in classical

mechanics, is actually modelled as being unaccelerated in General Relativity: Ac-

cording to the principle of equivalence, gravity is treated as being undistinguishable

from acceleration. Thus, all objects under influence of pure gravitation are moving

along straight lines. In curved spacetime, a straight line is described by a geodesic,

and it might be quite different from a straight line in flat, euclidean spacetime.

The geometrical properties of spacetime are described by a four dimensional met-

ric tensor field, the four dimensions being three spatial coordinates and one temporal

coordinate. The field is called metric because it defines the distance between two

neighboring points1 in spacetime. The curvature of spacetime is a tensor field as

well and determined from the metric tensor field and its first and second derivatives.

Another tensor field is used to describe quantities like energy and mass distribution

in every point of the four dimensional spacetime.

Tensor fields provide a mathematically convenient way to integrate many prop-

erties and quantities in a unified formulation. They are the common formalism in

the mathematics of differential geometry. Tensor calculus is a central concept of

differential geometry, which allows to model what is necessary here.

Einstein developed his field equations that relate the distribution of matter to

the curvature of spacetime. The Einstein field equations can be written in an elegant

1infinitesimal close

3
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symbolic way:

Gµν = κ Tµν (2.1)

The left hand side of the formula contains all information about the metric and

curvature of spacetime. Gµν is called Einstein tensor. On the right hand side of the

equation the stress-energy tensor Tµν contains all the information about location

and motion of matter (mass, energy and momentum). κ is a constant scalar.

Although these equations do not look very complicated, it is by no means an

easy task to solve them, because they are build upon ten coupled non-linear partial

differential equations, which makes it difficult to deal with them mathematically.

Only a few analytical solutions are known. The first one was found by Karl

Schwarzschild during the first world war. He made strong simplifications and found

a solution for the special case of a perfectly spherical mass distribution at rest in

vacuum. The solution is now known as the Schwarzschildlösung (see chapter 2.1.3).

It contains a mathematical singularity: at this point the spacetime curvature gets

infinite.

In case of non-rotational symmetries the differential equations get very compli-

cated. At the full level of complexity, with no simplifications applied, equations

with huge numbers of terms have to be solved. Today, simulations using numer-

ical methods, like the finite difference method, can be run on high performance

supercomputers to solve these partial differential equations.

For a more detailed introduction into General Relativity see [Sch03] and of course

[Ein16].

2.1.2 Gravitational Lenses

As mentioned above, masses cause curvature of space. The path of a ray of light

that passes a (heavy) object, e.g. a sun, will be diverted. If light is distorted by a

mass located between the light source and an observer, the distortion effect seen by

the observer is called a gravitational lens.

Figure 2.1 shows the principle of bending of light caused by a gravitational lens.

On the right side is the observer (red), in the middle a mass (black), and on the

left side is the observed object (blue). Light that is emitted from the object and

reaches the observer gets bent by the mass on (blue and yellow lines). Now the

observer, who is only familiar with flat space and straight rays of light, sees several

images of one and the same object (grey). The images show the object from different

perspectives and distances, because of the different paths the light takes (blue and
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Figure 2.1: Bending of Light by a Mass

yellow lines). More pictures showing the optical effect from the observers point of

view can be found in chapter 4.

Figure 2.2: Example of a Gravitational Lens

Gravitational lenses can be observed in nature looking for example at the galaxy

cluster Abell 2218. Figure 2.2 shows a picture of Abell 2218 taken by the Hubble

Space Telescope. A gravitational lens bends the light from galaxies, which are

located (far) behind this lens. These far galaxies cause the arcs seen in the picture.

A gravitational lens also magnifies objects located behind it. This property can be

used as a gravitational telescope to get pictures of galaxies very far away. Another

application of gravitational lensing is the reconstruction of mass distributions in

certain sectors from the amount of the measured gravitational lens effects.

In this thesis an approximation for the deflection of light by a “small but heavy”
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mass derived from the Schwarzschild solution is used to simulate the gravitational

lens effect. Such a mass could be an astronomical object called a black hole. Gravi-

tational force near a black hole is so strong, that a body in order to “escape” from

the gravitational field, would have to be faster than the speed of light, which is

impossible by Einstein’s special relativity. This now also implies that light itself

cannot escape the gravitational field caused by a black hole and so they appear

to be perfectly black. The spherical boundary around the centre of a black hole,

where its gravitational field gets strong enough to prevent light from escaping, is

called event horizon. Everything that crosses this event horizon will never be able

to escape the black hole.

2.1.3 Derivation of an Approximation

Starting from the Schwarzschild solution we are going to derive a simple approxi-

mation for the path of light:

ds2 =

(

1 −
2m

r

)

dt2 −
1

1 − 2m
r

dr2 − r2dΩ2 (2.2)

m ... mass of “lens”

with Ω2 = dϑ2 + sin2ϑdϕ2

W.l.o.g.: ϑ = π/2, thus: dΩ = dϕ. The trajectory of a light-like geodesic (path of

light) q̇(s) = {ṫ, ṙ, π/2, ϕ̇} satisfies the following equation:

G(q̇, q̇) = 0 (2.3)

where G(q̇, q̇) represents the Lagrange-function L of ... (so q is an extremum):

L =

(

1 −
2m

r

)

ṫ2 −
1

1 − 2m
r

ṙ2 − r2ϕ̇2 (2.4)

The following two laws of conservation are called conservation of “energy” and con-

servation of “angular momentum”, in analogy to Newton’s mechanics:

∂L

∂t
= 0 =

d

ds

∂L

∂ṫ
→

∂L

∂ṫ
= const. ≡ 2

(

1 −
2m

r

)

ṫ =: 2E (2.5)

∂L

∂ϕ
= 0 =

d

ds

∂L

∂ϕ̇
→

∂L

∂ϕ̇
= const. ≡ −2r2ϕ̇ =: −2L (2.6)

Inserting E, and taking the constraint for “light-like” into account (G(q̇, q̇) = 0) we

get:

E2

1 − 2m
r

−
1

1 − 2m
r

ṙ2 − r2ϕ̇2 = 0

∣

∣

∣

∣

·
1

ϕ̇2
(2.7)
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1

1 − 2m
r

(

E2

ϕ̇2
−

ṙ2

ϕ̇2

)

− r2 = 0 (2.8)

Where

ṙ

ϕ̇
=

dr
ds
dϕ

ds

=
dr

dϕ
=: r′ (2.9)

With the conservation of “angular momentum” (ϕ̇ = L/r2):

1

1 − 2m
r

(

E2r4

L2
− r′

2

)

− r2 = 0 (2.10)

respectively:

r′
2

=
E2

L2
r4 − r2

(

1 −
2m

r

)

(2.11)

With this equation r(ϕ) principally could be evaluated. But the equation becomes a

lot simpler with the substitution u(ϕ) := 1/r(ϕ) (radial-inverse polar-coordinates):

r := 1/u r′ := −u′/u2 (2.12)

Then the geodesic equation is:

u′2 = −u2 + 2mu3 +
E2

L2
(2.13)

Differentiation with respect to ϕ leads to a differential equation of second order for

u:

u′′ = −u + 3mu2 (2.14)

u′′ + u = 3mu2 (2.15)

To derive the total deflection angle δ between the two asymptotes of the light-like

geodesic, we introduce an approximation (see Figure 2.3) and assume:

u =
sinϕ

b
(2.16)

This leads to the following equation after insertion into 2.15:

u′′ + u = 3m
sin2ϕ

b2
= 3m

1 − cos2ϕ

b2
(2.17)

The solution in the weak field limit, at far distances from the centre, is given by:

u1 = 3m
1 + 1

3
cos2ϕ

2b2
(2.18)
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Figure 2.3: Linearisation of a Geodesic

In second order we have:

u =
sinϕ

b
+

3m

2b2
(1 +

1

3
cos2ϕ) (2.19)

If we assume that r is large compared to u, we have sinϕ ≈ ϕ and cosϕ ≈ 1. Taking

the limit u → 0 and ϕ → ϕ∞, leads to:

0 =
ϕ∞

b
+

3m

2b2
(
4

3
) (2.20)

The total deflection angle δ is twice ϕ∞:

δ = 2|ϕ∞| =
4m

b
(2.21)

Also from the Schwarzschild solution (at large distances) the integraton constant m

can be interpreted as the mass of the spacetime:

m =
GM

c2
(2.22)

Now we can replace m, which is mass in [kg] by M , which is mass in [m]. Insertion

into the equation above leads to:

δ = 4
GM

c2

1

b
(2.23)

The Schwarzschild solution has an apparent singularity at:

r = Rs := 2
GM

c2
(2.24)

This radius Rs is called Schwarzschild radius, which also is the radius of the event

horizon. Final insertion leads to the final equation:

δ = 2
Rs

b
(2.25)
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Now we have found an expression for the deflection angle that is only dependent

on the Schwarzschild radius (which is equivalent to the mass of an object) and the

distance b. In chapter 3.3 we will use this equation to approximate a curved ray of

light by a “kinked” one.

Parts of this approximation and much more mathematical material about Gen-

eral Relativity and astronomy can be found in [Str91].

2.2 Visualisation using Raytracing

Nowadays, computer aided 3D visualisation techniques are used routinely in many

fields. During a visualisation process pictures and movies are produced. In the field

of science, structures and processes that go beyond our everyday experience are of-

ten visualised e.g. a tensor field of a numerically simulated fluid or a tensor field of

spacetime curvature (see [Ben04]). Scientific visualisations need an excellent read-

ability of the information contained in the structure in order to help to understand

the problem under investigation.

Entertainment is another field, where visualisation is used frequently. Its purpose

is to allow cheaper productions and/or to visualise fantastic structures, e.g. an alien

form of life in a science fiction movie. In the entertainment industry it is important

to generate realistically looking images of very high quality to convince and impress

the audience.

To generate an image of an (artifical) scenery, one has to define the shapes of

3D objects geometrically, the material properties (e.g. roughness, colour, etc) of the

3D object’s surfaces, light sources and a camera object. The combination of the

geometric data, the material data, the light sources and the camera is called a 3D

scene and the process of image generation is called rendering.

Commonly, two main techniques are used for rendering. Projection2 is the first

and raytracing is the second. Since raytracing is important for this thesis, it is

described in detail in the following sections.

2.2.1 Principles of Raytracing

The approach of raytracing is the following: Light sources emit rays of light into

a 3D scene. These rays intersect 3D objects. At the point of intersection light

is absorbed, reflected or refracted, dependent on the material assigned to the 3D

2In fact these techniques often use a transformation instead of a projection, because transfor-

mations are reversible whereas projections are not.
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Figure 2.4: The Approach of Raytracing

object. Some of these reflected and refracted rays of light finally find their way to

the camera, or more precisely intersect with the camera image plane, see Figure 2.4.

Since it would be quite inefficient to emit many rays that do not intersect the

camera image plane, the raytracing algorithm proceeds “backwards”.

Initially, one ray, the so called camera ray or first order ray, is sent from the

camera into the 3D scene. In our example, see Figure 2.5, the camera ray intersects

a 3D object, a sphere. At the point of intersection with the sphere a colour value

dependent on the surface normal, the material properties and the lightsources is

calculated. If the material is a reflective or a refractive one, new rays (second order

rays) are sent into the 3D scene in appropriate directions. The directions can be

defined by simple laws, e.g. incoming angle equals outgoing angle for reflection or

Snell’s law for refraction. These second order rays then again can intersect some 3D

objects, where a colour value depending on their material properties is evaluated

etc. A more precise definition of the recursive raytracing algorithm can be found in

[Fol97].

Shading, a term used frequently later, is the process of evaluating the colour and

transparency at a given surface point. The entity that evaluates the colour is usually

called a material, or in terms of the 3D package Maya, a shader.
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Figure 2.5: The Raytracing Algorithm

2.2.2 Examples, Advantages and Disadvantages

In contrast to projection techniques the concept of raytracing is more based on

a physical model. The possibility to calculate light effects physically correct is

a great advantage of raytracing. However, the physical model has its cost. The

overall rendering process using projection techniques is generally faster than using

raytracing. It has furthermore the advantage that less data have to be kept in

memory during rendering. This is especially important if very large and detailed 3D

scenes as used in motion picture productions are generated.

Rendering using projection techniques requires to use simple geometric primitives

that can be projected easily. In most cases these geometric primitives are polygons

(triangular primitives) or quads (rectangular primitives). All higher order objects

have to be tessellated into these simple primitives before rendering.

In raytracing, any geometric object can be used if a calculation for an intersection

between a ray and the object can be formulated. For example, a sphere is for

a raytracer a simple object which is “perfectly round”. In contrast, a projection

rendering engine would first tessellate the sphere into triangles and then render the

triangle representation of the sphere.

Thus, modern high-end rendering engines combine both techniques. They use

raytracing only were it is really necessary. Such rendering engines are called hybrid

rendering engines. Examples of pure raytracing engines are POV Ray and Light++.

An example of a pure projection rendering engine is OpenGL. A modern high-end

rendering engine that is widely used for movie production is PIXAR Renderman,
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which was originally designed to be a pure projection rendering engine. In the last

years it became a hybrid rendering engine. Another high-end rendering engine is

Mental Ray by Mental Images, which was initially a pure raytracer and became a

hybrid rendering engine later. The rendering engine of Maya is also a hybrid one.



Chapter 3

Description of the Plug-In

3.1 Motivation and Basic Idea

My intention was to provide a possibility for an end user who is familiar with com-

mon 3D applications, which allows to generate correct images of the bending effect

and, thus, can easily be used for scientific visualisation as well as for entertainment

purposes. The idea was to extend the functionality of a widely used application by

a plug-in. It goes without saying that raytracing is a perfect rendering technique to

simulate the bending effect. A commercial rendering engine, however, is usually not

capable of simulating curved rays of light. So, a simple way to make this possible

had to be found.

The idea was not to extend the raytracing engine itself by the possibility to

simulate curved rays but to create a shader that “does” the light bending. This

would work in a similar way as with a shader that simulates the refraction of glass:

A sphere centred around the black hole with an assigned shader could “produce” the

light bending effect. So, the bending of the rays would “happen” inside the shader

and so could be rendered in a conventional way by the rendering engine. In fact,

the spectator would see a sphere on which is projected what is to be simulated.

3.2 Maya

One of the many 3D applications is Maya. It was originally developed by Alias-

Wavefront. Alias-Wavefront has changed its name to Alias recently and was taken

over by Autodesk last year. Maya can be customised to a high extend, which is

the reason why it is often first choice in large scale productions. Two very famous

examples are its use as the main 3D application for Peter Jackson’s “Lord of the

13
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Rings” and as the main animation package for George Lukas’ “Star Wars” episodes

2 and 3. Maya might not show its full strength in a single user environment but its

flexibility is still a great advantage for what concerns implementation. This was the

reason why I chose Maya for my relativistic shader plug-in.

Figure 3.1: The User Interface of Maya

3.2.1 General Description

From a 3D artist’s point of view, Maya is a powerful application for creating and

editing 3D computer graphics. It provides a lot of tools for modeling1, animating

and rendering. The artist uses the common graphical user interface to do his work

and can extend the GUI2 by writing scripts in an interpreted programming language

called MEL3.

1computer aided “sculpting” of 3D objects
2
Graphical User Interface

3
Maya Embedded Language
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From a programmer’s point of view, Maya provides a large collection of routines

and tools that can be accessed via the API4.

Figure 3.2: The Script Editor

Maya was developed in C++ and is available for the following platforms: Irix

(SGI/PC), Linux (PC), Windows (PC) and OS X (Mac). Its core consists of the

C++ classes and functions that provide all data manipulation mechanisms and,

secondly, of the MEL script interpreter. Everything that can be accomplished with

a mouse click can be done by executing a line of MEL script. In fact, the mouse

click first produces a script command that is then executed by the script interpreter.

This can be made visible in Mayas script editor window (see Figure 3.2) by enabling

“echo all commands”. E.g. the last line of text in Figure 3.2 shows the command

that is generated and executed when clicking on “create NURBS sphere” in the GUI.

Additionally, the GUI elements are also controlled via the script language. So,

an experienced user can easily customise the GUI of the whole application to his

own needs.

4
Application Programming Interface
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3.2.2 The Dependency Graph

Let us have a look at the data organisation model of Maya. All information of a

3D scene in Maya is stored in a network of nodes. A node, the atomic entity of the

network, has inputs and outputs that are connected to inputs and outputs of other

nodes. The data is “flowing” through this network of nodes, the “operants” that

modify or create data. Such a design is often refered to as data flow model. Data,

fed into the network, flows through and comes out at the other end. In fact, Maya

does not use such a strict data flow model, but a so called push-pull model. But let

us have a more detailed look at the atomic entities first.

Figure 3.3: Schematic Node

A node is the fundamental component in the representation of a Maya scene. It

holds attributes and a compute function. The attributes store the data in the node.

As mentioned above, a node has some input and some output connectors so that a

network of nodes can be set up. Any attribute of a node can, but does not have

to, be declared as either an input or an output attribute. An attribute can be of

a simple data type such as a boolean, char, integer or float or it can be a more

complex type like point or vector or even polygon surfaces or particle clouds.

All types of attributes that may be used can be found in the API. Figure 3.3 shows

a node with two input and one output connections.

The compute function operates on the attributes of the node. It computes the

output attributes depending on the input attributes. The compute function should

be restricted to the local data of the node. The idea of the network is that every node

is “responsible” for a small part of the scene and the network as a whole performs

complex tasks. In our example node shown in Figure 3.3, the compute function

computes a value z from x and y.

If we construct a network where we want to get certain results for an output

attribute, it is important to think carefully when which nodes call their compute
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functions. If we think of the network as an acyclic directed graph, one could start

at all source nodes, call their compute functions and then update the neighbouring

nodes, then repeat this successively for the neighbours until the final output is

computed. This way, the whole network will be updated even if it is not necessary

for the output attribute of interest.

As example, take the network shown in Figure 3.4. A data change in node n1

would involve the update of all other nodes (n2 to n5 ). This approach is called a

push model because data is pushed in a top-to-bottom fashion through the network.

Often, it is not necessary that all nodes are up to date. Perhaps it is just node n5

that needs to be up to date. Then nodes n3 and n4 are recomputed unnecessarily

decreasing performance.

Figure 3.4: Schematic Network

To solve this problem, an update flag is introduced. Every node is associated

with a flag that marks whether a node needs to recompute or not. Assume, node

n1 is changed, and only node n5 needs to be up to date. Now, in a first step, the

update flag is pushed through the network starting from node n1. All nodes that

depend on n1 are marked (see middle diagram of Figure 3.4). The source node itself

is recomputed when the values are changed. Thus, n1 itself is not marked. In a

second step, values are requested from n5. Now starting from n5 the update flags

are checked and if they are set, an update has to be done. As n5 is marked, it has

to be updated. Then, the values from n2 are requested to recompute n5. But as n2

itself is marked, the values from n1 have to be requested first. Since they are not

marked, they are up to date and passed to n2. n2 recomputes, unmarks its update

flag and passes its outgoing attributes to n5. Finally, n5 recomputes. Note, that

nodes n3 and n4 were not updated and are still marked (see right diagram of Figure

3.4).

The approach described above is called a push-pull model, because first the flag
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is pushed through the network and then the data is pulled down.

The update mechanism in Maya works in a similar fashion, but it is a bit more

sophisticated. Not every node has an update flag but every attribute (input, output

or other attribute) does. The programmer of a node additionally has to tell Maya on

which input attributes the ouput attributes dependent. A more precise schematic

diagram of a node can be seen in Figure 3.5. Here, the update flag is represented

by a rectangle next to the attribute name and the dependency of the attributes is

shown by the white lines.

Figure 3.5: Schematic Node Revisited

Figure 3.6: Schematic Network Revisited

Figure 3.6 shows a network of revisited nodes (upper left network). Here again

the update process is illustrated. The lower left node is changed, the update flag

is pushed through the nodes marking the attributes (upper right network), the
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rightmost node is asked to be up to date and the according nodes recompute (lower

network).

A node is a very general entity and can be anything: a timer, a simple mathe-

matical operation, a polygon object or a complex fluid simulation.

This data organisation and computation model provides a high flexibility. For

example, if a user alters a 3D model, a node could be created and inserted after the

original 3D model creation node. The newly created node gets the model as input

and outputs the altered model. All modifications made by the user can hereby later

easily be changed or canceled, either by changing some input values of the inserted

new node or by deleting it.

The network, or parts of it, can be analysed and edited with a hypergraph editor

within Maya. In Figure 3.7 we see all the nodes and connections of an example

network. Nodes can be deleted, altered or connections can be created between

attributes on a very low level. This allows a very powerful and flexible, but not very

user friendly, control over the entire 3D scene.

Figure 3.7: The Dependency Graph

3.2.3 API

The Application Programming Interface enables to develop either stand-alone ap-

plications with access to Maya’s data or plug-ins which extend the functionality of

Maya. In this section, only the latter will be described.
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Maya provides a developer toolkit with a lot of examples and prepared files that

help to get started and get the right configurations for paths and linking. Compiled

plug-ins are runtime linked into Maya. So, one has to compile the code to a *.dll5,

*.so6 or *.lib7. The plug-in has to be copied to the ../maya/bin/plug-ins directory

and then can be loaded and unloaded by the plug-in manager, (see Figure 3.8).

Figure 3.8: Plug-In Manager

The API consists of about 250 C++ classes, but only a few are typically needed

for a plug-in. The classes can logically be grouped as follows:

Proxy objects (MPx): Proxy classes are those classes, from which other

classes are thought to be derived. For example MPxNode is the general node

class which is the start for the black hole shader plug-in.

Iterator classes (MIt): Iterator classes are used to traverse through different

kinds of data objects. Examples are an iterator for the dependency graph

nodes, for key-frames or polygon edges.

Function sets (MFn): The function sets provide all the data manipulation

functions for data class objects. In Maya the functions are separated from the

data classes8. Thus, for any kind of data, at least one function set is needed

that can operate on it.

5Windows
6Linux, Irix
7OS X
8In terms of computer science this is often refered to as the Strategy Pattern.
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Maya classes (M): All other classes. They also include all necessary data

classes, for example MPoint or MVector. Even more complicated ones like

floatpointarrays or similar data types. One usually gets by with these types

and does not need to use the STL9 or other libraries. Using Maya types

and self-written types only has the advantage that the source code of a Maya

plug-in is portable to all other platforms that can run Maya.

The interface itself is defined in header files that can be included into the personal

code. The functionality comes along in five precompiled libraries, namely: Open-

Maya, OpenMayaUI, OpenMayaAnim, OpenMayaFX and OpenMayaRender. They

provide the fundamental functionality, user interface elements, animation classes,

classes for dynamic simulations and classes for rendering.

A plug-in is typically of one of the following types:

Command: Customised commands can be written. They work the same way

as any native MEL command of Maya does. They can be executed by the

script interpreter. Features like undo/redo and help are supported.

Dependancy Graph Node: One can derive a class from the general DAG

Node class MPxNode. This allows to write an own single node, which can then

be connected into the dependency graph like a native Maya node. The API

also provides more specialised node classes for locators, ik-solvers10, deform-

ers, fields, emitters, springs, manipulators, surfaces, object sets, shaders and

transform nodes.

File Translator: A class for deriving a custom file translator is provided by

the API. File translators are responsible for loading and saving data. This and

a prepared example from the developer toolkit enables to support your own

file formats.

The Class MObject

When using the Maya API one never gains direct control over the internal data of

Maya. Instead, one uses the MObject class to access all internal objects. MObject is

a handle to other objects in the Maya core. An instance of it represents a specific

attribute or a node and can be of many different types. This has the advantage

9
Standard Template Library, a collection of algorithms and data structures, part of the C++

standard
10inverse kinematic solvers, used for skeleton animation
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that for the plug-in, the internal representation is not important. This allows the

developers at Alias to change the internal structure of the core by still supporting

the old plug-in interface.

A Dependency Graph Node Plug-In

Let us have a look at a small example of a dependency graph node plug-in. Listing

3.1 shows a class declaration of a simple node like the node in Figure 3.3. The class

ExampleNode is derived from the base class for all DAG nodes of the API.

When a node in Maya is created, it internally generates two objects. An MObject

and the user derived object. The association between these two objects is established

when the MPxNode constructor is called. Thus, it is not possible to call member

functions of the derived class in its constructor. To make this possible, the function

postConstructor() can be used.

The compute function is the heart of the plug-in. It recomputes the output

attributes based on the input attributes.

The MDataBlock storages the node’s attributes and connectors (in Maya API

called plugs) and provides smart handles for reading and writing the attributes.

When reading an attribute of the node, an MDataHandle has to be created from the

MDatablock and the MObject representing the according attribute. Then the values of

the attribute can be read or written using the created MDataHandle. The MDataBlock

is only valid during the call of the compute function of the according node.

For example, when the attribute aX is read, one has first to create a handle to the

attribute by using the MDataBlock and the static MObject member aX: MDataHandle

aXhnd = data.inputValue(aX). This ensures that the input value is valid and not

marked by the update flag. Using aXhnd.set(4.5) would assign a new value to the

attribute. Of course, there are a lot of functions for getting or setting values and

also for type checking.

MPlugs are generally used to access attributes of nodes. An attribute can be

connected to a plug to access it. In simple cases, the attribute and the plug are

equivalent, but they need not, for example, when accessing array types. Plugs can

have a hierarchy, thus, every node has an internal tree of plugs indicating connections

that have been made to attributes of that node. Here the MPlug represents the data

value that needs to be recomputed.

Listing 3.1: DAG Node Class

1 c l a s s ExampleNode : pub l i c MPxNode

2 {
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3 pub l i c :

4 ExampleNode ( ) ;

5 v i r t u a l ˜ExampleNode ( ) ;

6

7 v i r t u a l void postConstructor ( ) ;

8 v i r t u a l MStatus compute ( const MPlug&, MDataBlock& ) ;

9

10 s t a t i c void ∗ c r ea to r ( ) ;

11 s t a t i c MStatus i n i t i a l i z e ( ) ;

12 s t a t i c MTypeId id ;

13

14 p r i v a t e :

15

16 s t a t i c MObject aX ;

17 s t a t i c MObject aY ;

18

19 s t a t i c MObject aZ ;

20 } ;

The function creator() is used to register our external code to Maya by its

plug-in mechanism. The initialize() function is responsible for creating instances

of new classes of the node and to register the node’s attributes with type and two

names. The variable id is a four byte identifier. It must be unique and identifies

the node.

3.2.4 MEL

The Maya Embedded Language is an interpreted script language. As already men-

tioned, MEL is a central design point in the Maya architecture. All interactions

with the GUI first create MEL scripts, which then are executed. MEL is also used

to control and extend the GUI.

There are several ways of executing MEL code in Maya. One can use the com-

mand line which is always visible at the bottom of the main window, the script

editor (see Figure 3.2) or a shell like window, the command shell. If one wants

to execute the same lines of code repeatedly during a work flow, one can create a

button to execute these lines or one can assign a hot-key.

The syntax of MEL is very similar to C. MEL contains the following basic struc-

tures: Variables, vectors, arrays, matrices, scopes, functions, commands, operators,

loops and conditional statements and comments.
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Variables can be of the basic types integer (int), 64 bit floating point (float)

and strings (string). A specific type boolean does not exist, an integer has

to be used instead. The keywords true, on and yes are synonyms for 1 and

false, off and no for 0. In MEL a variable name always has to start with $.

Vector is a type that is composed of three floats. Like with variables, names

have to start with $. The components of the vector can be accessed by the

suffices .x, .y and .z.

Arrays are lists of elements of the same type. MEL manages the size of the

arrays independently, they will automatically be resized on demand. An array

name must also start with $. To access certain elements the common “[ ]”

brackets have to be used.

Matrices are two dimensional arrays with the restriction that they can only

store floats and that they are not resized automatically.

Scopes are the areas of validity of variables. A scope is a section of MEL

code that is enclosed by { and }. A variable exists in the scope it was defined

in, including inner scopes. In other words, a variable is local to its scope. A

variable can be made global by writing global in front of a variable declaration.

If a variable is global it is accessible from anywhere in Maya.

Functions are called procedures in MEL. A procedure can take an unlimited

number of arguments and return no or a single value. The keyword proc is

used to define a procedure.

Commands are similar to functions but they are provided by Maya and not

written by a user. Commands take some input arguments, do some action and

have a return value. One of the simplest commands is print() which prints out

a string in the script editor console. Commands build up the functionality of

Maya, more than thousand commands are provided. A complete list including

descriptions can be found in the Maya help files, ([MH65]). Some commands

that are used frequently are setAttr and getAttr to set and get values of

certain attributes of a node. Another very commonly used command is ls11

which returns the names of the objects in a scene. I also used connectAttr,

listConnections, shadingNode, sphere and sets in my MEL scripts, which

will be described later.
11stands for list
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Operators come with the following precedence: (),[]; !, ++, --; *, /, %, ^; +,

-; <, <=, >, >=; ==, !=; &&; ||; ?:; =, +=, -=, *= and /=.

Loops and conditional statements: Three types of loops are supported

by MEL: the for, the while and the do-while loop. The common constructs

continue and break to proceed to the next loop iteration or to leave the loop

are provided, too. The conditional statements of MEL are if and switch.

MEL also supports the conditional construct <bool expr>?<code>:<code>.

Comments are similar to C++. /* and */ are used for multi-line comments

and // for single-line comments.

More information about MEL scripting and plug-in development can be found in

[Gou03] and [MH65].

3.3 The Plug-In

The rendering engine of Maya is a hybrid rendering engine, it uses both, projection

and raytracing. Only the objects that have a shader assigned that needs raytracing

are actually raytraced. A simple example would be a sphere with a glass shader

assigned. The glass shader would use Snell’s Law to calculate refraction, which is

only possible by raytracing. Thus, the parts of the picture that show the glass sphere

are raytraced when rendered.

The rendering engine only is capable of visualising 3D scenes in euclidean geom-

etry but not curved spacetime. In order to visualise the effect of bending of light

the black hole is surrounded by a sphere, which is assigned a shader that uses, in

analogy to the refraction example, the approximation derived in 2.1.3 to simulate

the effect. Now, if a ray intersects the sphere the shader is called and computes a

colour value, by sending a “curved” ray into the scene. The rendering engine finally

gets a colour value back as if the original ray sent by it was sent into curved space.

In other words, a shader on a sphere surrounding the black hole projects the

scene a spectator would see if space would be curved onto the sphere.

This approach requires the following setup: a black hole represented by a black

inner sphere. A sphere surrounding the black hole, called the outer sphere. Finally,

the relativistic black hole shader for which I developed the plug-in. Additionally, I

developed two MEL scripts that integrate the whole in the GUI of Maya.
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Figure 3.9: Black Hole Setup

3.3.1 The Relativistic Black Hole Shader

Rendering a single pixel works as follows: Starting from the camera the rendering

engine sends a first order ray into the scene. In our example (see Figure 3.9), it

intersects with the outer sphere in S and therefore the shader assigned to the outer

sphere is called.

A standard shader would compute a colour and transparency value using the

first order ray’s incoming direction, the point of intersection, the surface normal at

the intersection point and the parameters of the light sources. The relativistic black

hole shader only takes into account the intersection point, the centre point of the

black hole, and a mass attribute to compute the colour.

First, the “bend point” B is computed by determining the shortest distance

between the centre of the black hole and the first order ray. Next, the deflection

angle based on the equation 2.25 derived in chapter 2.1.3 is computed:

δ =
2Rs

b

with Rs is the Schwarzschild radius (the radius of the black hole’s event horizon),

which equals the radius of the inner sphere in our approach. b is the distance between

the centre of the black hole and the point B and δ is the angle between the first

order and the second shader ray. The second shader ray always starts at point B.

An intersection with the backside of the outer sphere is intentionally prevented.

In our example, an object is located “behind” the black hole. The second shader

ray intersects this object in F . So, the shader assigned to the object is called to
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evaluate the colour value at this point. This colour is then returned to the rendering

engine by the relativistic black hole shader at the intersection point S.

Figure 3.10: Rendering a Blackhole

Figure 3.10 shows an example scene composed 3D equivalent to the simplified

example used to illustrate the algorithm. The picture on the left shows the inner

sphere (the small black sphere in the centre), the outer sphere (the transparent grey

sphere) and a real scene object, a blue sphere located behind the outer sphere. The

shader is not assigned or activated for the outer sphere and therefore a transparent

sphere can be seen. In the picture on the right, the relativistic black hole shader was

assigned to and activated on the outer sphere, which makes it invisible as sphere

and simulates the light bending effect.

Without any further measures using formula 2.25 would lead to a strong discon-

tinuity at the border of the outer sphere, the “border between curved and euclidean

space”.

To ensure a continuous and seamless optical integration at the border of the

outer sphere, the deflection angle δ has to be modified. A linear factor dependent

on the distance to the centre of the black hole turned out to be suitable. Using

this a high simulation accuracy is achieved at the inner region, where curvature is

high. Near the border of the outer sphere the high correction factor leads to a nearly

seamless integration into the scene.

The shader was developed with the Maya API as a shader node plug-in. It was

derived from the most general base class MPxNode. All parameters listed above are set

as input attributes in the shader node. The source code of the class declaration (see

Listing 3.2) shows additional attributes that are needed to gather all information
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necessary for raytracing. For example the intersection point, the direction of the

incoming ray and the depth of the incoming ray12. The attribute aOutColor is the

only output of the node and is the final computed colour of the intersection point

on the outer sphere.

The compute() function, again, is the heart of the shader node. It gets all

the information needed for the computation of the positions and directions of the

rays that the shader sends into the 3D scene (the first and second shader ray),

computes them by vector analysis and then uses the functions raytrace() and

raytraceFirstGeometryIntersections() of the API class MRenderUtil to send these

rays.

The function raytrace() only returns the colour for the computed intersection

point. Because the ray that has to be traced for an intersection bends at B, in-

tersections between an object and the first shader ray occurring “behind” B can

be ignored. The shader first uses raytraceFirstGeometryIntersections() to test

whether there is an intersection between S and B, and if there is one, it calls

raytrace() with the point returned by raytraceFirstGeometryIntersections() to

evaluate the colour and transparency values of this point.

For the second shader ray only the colour information of the intersection is needed

and raytrace() can be called directly to evaluate it.

Listing 3.2: Relativistic Black Hole Shader

1 c l a s s Re l a t i v i s t i cB l a ckho l e Shad e r : pub l i c MPxNode

2 {

3 pub l i c :

4 Re l a t i v i s t i cB l a ckho l eShad e r ( ) ;

5 v i r t u a l ˜ Re l a t i v i s t i cB l a ckho l e Shad e r ( ) ;

6

7 v i r t u a l MStatus compute ( const MPlug&, MDataBlock& ) ;

8 v i r t u a l void postConstructor ( ) ;

9 s t a t i c void ∗ c r ea to r ( ) ;

10 s t a t i c MStatus i n i t i a l i z e ( ) ;

11 s t a t i c MTypeId id ;

12 p r i v a t e :

13 s t a t i c MObject aBlackholeMass ;

14 s t a t i c MObject aXBlackholeCenter ;

15 s t a t i c MObject aYBlackholeCenter ;

12Every time a ray gets reflected, refracted or deflected by a shader, the ray’s depth is increased

by one. This is used to exit the raytracing algorithm in case of infinite recursion.
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16 s t a t i c MObject aZBlackholeCenter ;

17 s t a t i c MObject a In f i n i t yRad iu s ;

18 s t a t i c MObject aRenderCameraName ;

19 s t a t i c MObject aRenderObjectsBeforeBlackhole ;

20

21 s t a t i c MObject aPointCamera ;

22 s t a t i c MObject aNormalCamera ;

23 s t a t i c MObject aRayOrigin ;

24 s t a t i c MObject aRayDirect ion ;

25 s t a t i c MObject aObjectId ;

26 s t a t i c MObject aRaySampler ;

27 s t a t i c MObject aRayDepth ;

28

29 s t a t i c MObject aOutColor ;

30 } ;

An in-depth description of Maya’s internal raytracing functions can be found in

[MH65]. Next I will describe the integration of the relativistic black hole shader into

Maya’s dependency graph.

3.3.2 Integration in the Dependency Graph

To achieve a simple integration in the Maya workflow the shader is integrated in

a scene using two standard NURBS13 spheres for the inner sphere and the outer

sphere connected to the shader attributes.

The position of the black hole has to be defined by the position of the outer

sphere, which can be moved with the standard move tools in Maya. The radius of the

outer and inner sphere are controlled by the two shader parameters aInfinityRadius

and aBlackholeMass. When a user changes one of those shader parameters, the

sizes of the spheres change accordingly. To accomplish this connections between the

shader node and the NURBS sphere’s nodes have to be established.

The attributes x-, y-, and z-position of the outer sphere’s transform node are con-

nected to the relativistic black hole shader attributes aX-, aY- and aZBlackholeCenter.

The same outer sphere transformation attributes are then connected to the trans-

formation attributes of the inner sphere. Now the outer sphere position attributes

control the position of the black hole centre in the shader as well as the inner sphere

position.

13non uniform rational b-splines
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Figure 3.11: Connection Setup

Next the shader’s attribute aInfinityRadius is connected to the scale attributes

of the outer sphere and the shader’s aBlackholeMass is connected to the scale values

of the inner sphere. Figure 3.11 shows the established connections and the final

network that is part of the dependency graph.

Creating all these connections manually is a tedious work, which an end user

should be spared. A MEL script creates all objects necessary for the black hole and

sets up all the connections automatically. It also does some additional configura-

tions.

Listing 3.3: MEL Script to Create a Black Hole
1 s t r i n g $shadername = ‘ shadingNode −asShader Re l a t i v i s t i cB l a ckho l eShade r ‘ ;

2 s e tAttr ( $shadername +”. BlackholeMass ”) 0 . 5 ;

3 s e tAttr ( $shadername +”. In f i n i tyRad i u s ”) 5 . 0 ;

4

5 s e t s −r enderab l e t rue −noSur faceShader t rue −empty −name ( $shadername + ”SG” ) ;

6 connectAttr −f ( $shadername + ” . outColor ”) ( $shadername+”SG. sur f aceShader ” ) ;

7

8 sphere −p 0 0 0 −ax 0 1 0 −ssw 0 −esw 360 −r 1 −d 3 −ut 0 −t o l 0 . 01 −s 8 −nsp 4 −ch 1 ;

9 s t r i n g $ s e l e c t i o n [ ] = ‘ l s −s e l e c t i o n ‘ ;

10 s t r i n g $outer spher e = $ s e l e c t i o n [ 0 ] ;

11

12 s t r i n g $ r e l a t i v e s [ ] = ‘ l i s tR e l a t i v e s ‘ ;

13 s e tAttr ( $ r e l a t i v e s [ 0 ]+” . doubleSided ”) 0 ;

14

15 s t r i n g $ sour ce [ ] = ‘ l i s tConnec t i on s −sour ce on −de s t i na t i on o f f − plugs o f f

16 −connect i ons o f f −shapes o f f $ r e l a t i v e s [ 0 ] ‘ ;

17 s e tAttr − l t rue ( $ sour ce [ 0 ] +”. rad ius ” ) ;

18

19 s e t s −forceElement ( $shadername + ”SG”) $outer spher e ;



Rendering Black Holes in Maya 31

20

21 connectAttr −f ( $shadername +”. In f i n i tyRad i u s ”) ( $outer spher e +”. scaleX ” ) ;

22 connectAttr −f ( $shadername +”. In f i n i tyRad i u s ”) ( $outer spher e +”. scaleY ” ) ;

23 connectAttr −f ( $shadername +”. In f i n i tyRad i u s ”) ( $outer spher e +”. s ca l eZ ” ) ;

24 connectAttr −f ( $outer spher e +”. t r ans l a teX ”) ( $shadername +”. BlackholeXCenter ” ) ;

25 connectAttr −f ( $outer spher e +”. t r ans l a teY ”) ( $shadername +”. BlackholeYCenter ” ) ;

26 connectAttr −f ( $outer spher e +”. t r an s l a t eZ ”) ( $shadername +”. BlackholeZCenter ” ) ;

27

28

29 sphere −p 0 0 0 −ax 0 1 0 −ssw 0 −esw 360 −r 1 −d 3 −ut 0 −t o l 0 . 01 −s 8 −nsp 4 −ch 1 ;

30 s t r i n g $ s e l e c t i o n [ ] = ‘ l s −s e l e c t i o n ‘ ;

31 s t r i n g $ i nne r sphe r e = $ s e l e c t i o n [ 0 ] ;

32

33 s t r i n g $ r e l a t i v e s [ ] = ‘ l i s tR e l a t i v e s ‘ ;

34 s e tAttr ( $ r e l a t i v e s [ 0 ]+” . doubleSided ”) 0 ;

35

36 s t r i n g $ sour ce [ ] = ‘ l i s tConnec t i on s −sour ce on −de s t i na t i on o f f − plugs o f f

37 −connect i ons o f f −shapes o f f $ r e l a t i v e s [ 0 ] ‘ ;

38 s e tAttr − l t rue ( $ sour ce [ 0 ] +”. rad ius ” ) ;

39

40 connectAttr −f ( $shadername +”.BlackholeMass ”) ( $ i nne r sphe r e +”. scaleX ” ) ;

41 connectAttr −f ( $shadername +”.BlackholeMass ”) ( $ i nne r sphe r e +”. scaleY ” ) ;

42 connectAttr −f ( $shadername +”.BlackholeMass ”) ( $ i nne r sphe r e +”. s ca l eZ ” ) ;

43 connectAttr −f ( $outer spher e +”. t r ans l a teX ”) ( $ i nne r sphe r e +”. t r ans l a teX ” ) ;

44 connectAttr −f ( $outer spher e +”. t r ans l a teY ”) ( $ i nne r sphe r e +”. t r ans l a teY ” ) ;

45 connectAttr −f ( $outer spher e +”. t r an s l a t eZ ”) ( $ i nne r sphe r e +”. t r an s l a t eZ ” ) ;

46

47 $shadername = ‘ shadingNode −asShader lambert ‘ ;

48 s e t s −r enderab l e t rue −noSur faceShader t rue −empty −name ( $shadername + ”SG” ) ;

49 connectAttr −f ( $shadername + ” . outColor ”) ( $shadername+”SG. sur f aceShader ” ) ;

50 s e tAttr ( $shadername +”. co l o r ”) −type double3 0 0 0 ;

51 s e t s −forceElement ( $shadername + ”SG”) $ i nne r sphe r e ;

52

53 s e tAttr ” de f au l tRenderQua l i ty . enableRaytracing ” 1 ;

54 i n t $tmp = ‘ getAttr ” de f au l tRenderQua l i ty . r e f l e c t i o n s ” ‘ ;

55 i f ( $tmp < 4 )

56 s e tAttr ” de f au l tRenderQua l i ty . r e f l e c t i o n s ” 4 ;

57 $tmp = ‘ getAttr ” de f au l tRenderQua l i ty . r e f r a c t i o n s ” ‘ ;

58 i f ( $tmp < 4 )

59 s e tAttr ” de f au l tRenderQua l i ty . r e f r a c t i o n s ” 4 ;

In line 1-3 a shader node is created, and two default values for the shader’s input

attributes are specified. The MEL command shadingNode creates a shading node of

specified type and returns its name. To make a shader functional, a shading group

has to be connected, which is done in line 5 and 6. In line 8-10 the outer sphere is

generated by using the sphere command.

After the execution of the sphere command, the NURBS sphere is a selected

object in Maya. To get the name of the sphere the command ls can be used. It

lists the names of selected objects. Maya automatically assigns names to objects. If

an object of the same type is created more than ones, a number is appended to the

name. The access to objects in MEL commands is usually done using their names.
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A NURBS sphere object in Maya consists of multiple nodes. A transform node,

a shape node, a makeNurbsSphere node and a shader node. The node name which

is returned by ls, if a NURBS sphere is selected, is the name of the transform node.

To prevent an intersection of the second shader ray when it leaves the outer

sphere the render stat attribute Double Sided of the sphere’s shape node has to be

set to zero. listRelatives gives the name of the related shape node (line 12) when

only the name of the sphere’s transform node is known. The attribute is then set

using the name of the shape node in line 13.

A similar procedure is applied to find the makeNurbsSphere node name using

listConnections. Here we want to lock the attribute Radius so that only the scale

values of the sphere’s transformation node can be used to control its size. Only the

shader attribute Inifity Radius should be used to control the size of the sphere. It

will be connected to the sphere’s scale attributes in the next step.

The relativistic black hole shader is then assigned to the sphere in line 19 and

all connections described above are set up in lines 21-26.

The inner sphere is assigned a standard shader that generates a black surface in

lines 47-51.

At the end some rendering attributes of Maya are set. In lines 53-59 raytracing

is enabled and the maximum ray depth is set to 4. Wihout setting these parameters,

a rendering using default values would cause the outer sphere to appear black.

The execution of the script creates a black hole with all its parts and configura-

tions and integrates it in the dependency graph. Multiple black holes can be created

be executing the script several times.

3.3.3 Integration in the GUI

A button that executes the script to generate a black hole can easily be added by

loading the script code into the script editor, highlighting it with the mouse and

draging it with the middle mouse button in the shelf. Maya automatically creates

a button for the dragged code. A picture can be assigned to the button by using

the shelf editor. Figure 3.12 shows the shelf with the create-black-hole button on the

right.

Figure 3.12: The Shelf
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For the integration of the attributes of the shader plug-in in the general attribute

editor a MEL script is the recommended way. It must be named AE[name]Template.mel14,

so the attribute editor template script for the relativistic black hole shader must be

named AERelativisticBlackholeShaderTemplate.mel. This file has to be located in

../Maya/scripts/AETemplates/. The script contains a global procedure that builds

up the necessary GUI elements for the attributes of the shader (see script in Appen-

dix B). The attribute editor contains the GUI elements for the shader’s attributes

(see Figure 3.13).

The integration in the shader window hypershade is done automatically by Maya.

A picture for the button can be added by placing it in the folder ../Maya/icons/

with following name render RelativisticBlackholeShader.xpm. The icon can be

seen in the upper left corner of the left window of Figure 3.13.

Figure 3.13: Hypershade and the Attribute Editor for the Shader Node

Now a user can create a black hole by pressing the create button and editing

the parameters of the shader in the graphical attribute editor. The position of the

black hole can then be modified by moving the outer sphere object. The black hole

behaves like a standard Maya object and can be used as such. To animate it, for

example, the standard key-frame procedure can be applied.

14AE stands for attribute editor



Chapter 4

Examples and Limitations

After having described the underlying technique and its implementation, in this

chapter the plug-in is demonstrated. The visual output is explained by means of

a simple scene: the relativistic living room. Also the limitations of the shader

approach are explained.

After that, real examples of previous work on black hole visualisations is pre-

sented. Later, pictures of the shader approach are compared to pictures rendered

using mathematically exact solutions. Finally the usage of the plug-in in a cross

media opera project, performed in public at the “Wissenschaftssommer 2005 in

Berlin”1, is presented.

Figure 4.1: The Relativistiv Living Room

1Summer of Science
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4.1 The Relativistic Living Room

The Relativistic Living Room is a scene showing a room with walls coloured in blue,

yellow, red and green with a checker board texture. The ceiling is coloured cyan, the

floor has a marble like texture in black and white. Some furniture is placed in it: a

table, a chair, a sofa, a lamp and a box-like sculpture, each side coloured differently

(see Figure 4.1). The aim was to generate a familiar 3D scene to make the bending

effect accessible to everyday experience.

A closer look will reveal a black hole “growing” at the centre of the scene (see

Figure 4.2). In the first picture everything looks perfectly normal. In the second

picture at the right armrest of the sofa a tiny black hole is located.

The diagrams in the lower right corner of the pictures show the placement and

relation of the inner and outer sphere and the camera schematically.

Figure 4.2: Normal Living Room and Tiny Black Hole

In Figure 4.3 the mass of the black hole was increased. The gravitational lens

effect can now be seen very well. Let us now have a look at the box-like sculpture.

It can be seen twice from different viewing angels.

Notice that the right red wall now appears at the left hand side of the gravita-

tional lens and the left blue wall at the right hand side. Also the ceiling (cyan) can

be seen, that is not visible at all in the normal picture. Also you can see the floor

directly above black hole.

The red sofa gets “bent around” the black hole and so forms a red “ring”. This

happens when objects are located behind the black hole. This phenomenon is called
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Figure 4.3: Black Hole

a “Einstein ring”.

We now construct two examples to show the limitations of the applied technique

(see Figure 4.4). In the left picture the outer sphere is small in relation to the inner

sphere. We see that there is a discontinuity at the border of the sphere despite the

linear correction.

In the right picture a cube is added to the scene. The cube intersects the inner

sphere and is placed in a way that first and also second order shader rays intersect

the cube. This causes a discontinuity between the pixels that are intersected by the

first order shader ray located next to the pixels intersected by the second shader

ray, what can be seen at the edges of the green and the yellow side of the cube.

4.2 Previous Work

The first work on computing pictures containing black holes that I found, was done

by Robert J. Nemiroff2 in 1991. He published articles 1991 and 1993 in the American

2Professor at the Department of Physics, University Michigan
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Figure 4.4: Limitations

Journal of Physics (see [Nem91] and [Nem93]). He also generated movies showing

the approach to a black hole, orbiting a black hole etc. The images he created are

not very appealing but quite understandable. An example of a scene without and

with a black hole created by him is shown in Figure 4.5. The differently coloured

disks represent stars. The left picture shows the scene without a black hole, the

right one with a black hole in the centre. Notice that each star appears twice on

opposite sides of the black hole’s centre.

Figure 4.5: Black Hole, Robert J. Nemiroff

In the same year (1991) Corvin Zahn wrote a diploma thesis on relativistic
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Figure 4.6: 4D Raytracing, Corvin Zahn

4D raytracing at the University of Tübingen3 [Zahn91]. He implemented his own

raytracing engine using a mathematically exact solution and created pictures and

movies of neutron stars and black holes. One of the movies shows a ring that rotates

around a black hole. Figure 4.6 shows the ring in a “normal” scene (left) and in a

relativistic scene containing a mass in the centre of the ring (right). Some rays are

bent so strongly that the backside of the ring can be seen.

Figure 4.7: Black Hole, Werner Benger

Werner Benger4 made first experiments based on equation 2.25 in 1992 with

his raytracing engine Light++. He then implemented a exact solver for simulating

curvature of space and created a scene containing a black hole in 1993 (see [Ben96]).

Although primarily developed to study gravitational effects Light++ offers most

3Department for Theoretical Astrophysics
4Laboratory for Creative Arts and Technology, Center for Computation Technology at

Louisiana State University
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of the standard and many non-standard features. With this tool pictures of more

appealing 3D scenes in curved space can be rendered. The scene in Figure 4.7 shows

a black hole that is surrounded by a black and white checkered membrane, which is

a little bit bigger than the event horizon. Almost the whole surface of the membrane

can be seen. The backside of the membrane is illuminated by the red icosaeder on

the right hand side. Werner Benger is still working on the raytracer and renderings

of black holes. Since 1993 a lot more features were added.

Andrew Hamilton5 wrote some web pages in 1997 describing the optical effects

when falling into a black hole. His pictures are very schematic but also very infor-

mative. He has added detailed descriptions to the pictures, [Ham97].

Later he started to develop a real time flight simulator that uses real-time graphic

techniques to simulate black holes. The pictures that are produced with the flight

simulator are impressive. He can simulate symmetrical Schwarzschild solutions and

also electrically charged black holes in real time. Figure 4.8 shows a view after having

passed the singularity in an imaginary universe where electric charge is imaginary.

He describes: ”Including parallel universes, no less than four distinct universes are

visible from this vantage point.”

Figure 4.8: Black Hole Flight Simulator, Andrew Hamilton

4.3 Exact versus Approximated Solutions

Rays of light that in reality would be strongly bent or would orbit around the centre

of a black hole a few times before they escape from it cannot be simulated with the

5Professor at the Department of Astrophysical and Planetary Sciences, University Colorado
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Maya plug-in. An exact solution uses curved light rays, for example implemented by

a piecewise linear approximation. Since the according differential equations have to

be solved this leads to longer computation times. The advantage of these methods

is of course that strongly curved rays as well as rays that orbit the black hole can

be simulated exact.

Let us now compare pictures of similar scenes created with exact solution tools

and the with simple plug-in approach by means of two examples. The first example

shows a ring similar to the scene created by Corvin Zahn rendered in Maya. The

second example shows a scene rendered in Werner Benger’s Light++ and a similar

scene rendered in Maya.

Figure 4.9: Ring around Black Hole

If we have a look at Figure 4.9 we notice, that the overall deformation of the

ring occurs in a similar fashion as in the exact solution shown in Figure 4.6. The

second image of the ring also occurs, but there is a difference compared to the exact

solution. The second image of the ring occurs all the time in the movie of Corvin

Zahn even if the ring is perpendicular to the image plane. This is because light rays

are bend by 180° around the black hole. This is not possible with the approximation

approach, because the inner sphere is hit when the deflection angle δ gets that large.

When removing the inner sphere the second image is completely visible, as shown in

the right picture of Figure 4.9. One can again see the discontinuities caused by the

kink of the ray when trying to get a similar deformation like in the exact solution.

The second example shows a picture by Werner Benger of a cube placed around a

black hole. I created a similar scene using Maya. Figure 4.10 shows Werner Benger’s

picture on the left and mine on the right. Again, taking a closer look at the edges
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Figure 4.10: Cube around Black Hole

of the cube, we can see the discontinuity caused by the kink. Another effect also

caused by the kink can be seen at the sphere in the centre of the image. Here the

brightness of the sphere changes in a discontinuous circle. Also the sphere appears

to be smaller in the right picture. Again the visual outcome is similar to the exact

solution, but objects must not be located too near to the centre of the black hole.

Knowing the limitations and taking them into account when designing a scene

it is possible to get fast nice results with the plug-in.

4.4 “C - The Speed of Light”

“C - The Speed of Light” is a cross media opera that was performed at the “Wis-

senschaftssommer 2005”6 in Berlin. It was organised by the company “Wissenschaft

im Dialog”7 [WID06], which was founded to communicate science to the public in

Germany. The program in 2005 was especially dedicated to Einstein.

Together with Phase-7 [Ph706], “Wissenschaft im Dialog” created a multi-media

opera on Einstein and his ideas that influenced science so much. Phase-7 is a creative

arts company specialised in developing and performing multi-media shows. They

combine classic forms of art, like dance and song, with modern media. In the opera

they brought together three singers, two dancers and a violinist and digitally created

classical music using the vienna sound sample library. For the backdrops they used

projections onto a 360° screen, showing rendered videos, real-time video effects and

real-time 3D graphics.

Phase-7 wanted to use scientifically correct video material for the backdrop

6Summer of Science 2005
7Science in Discourse
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Figure 4.11: Picture of Opera Animation

matching the topic closely. They collaborated with Werner Benger from the vi-

sualisation department of the Konrad Zuse Institute for Information Technology

Berlin. They found out about my work on a Maya plug-in through this collabora-

tion and asked me whether I could contribute a 30 second video clip showing black

holes.

Together with Alexander Senfter from Living Liquid Software [Liv06] I designed

and created a scene suiting the multi-media spectacle within two weeks. The video

had to be in fish-eye projection to match the projection setup and equipment used to

fill the 360° screen. We rendered five camera views (front, back, left, right and top)

and stitched them together with a software tool provided by the company from that

Phase-7 hired the 360° screen. Every single picture has a resolution of 2048×2048

pixels. The scene shows a landscape formed out of box-like objects, where two steam

trains orbit black holes. Figure 4.11 shows a picture of the final video (right) and a

detailed view of a train behind two black holes (left). On one side a train orbits the

black hole, on the other side a train moves around two black holes, whereby the two

black holes are orbiting around a common centre. This leads to an quite visually

impressive appearance.

The idea of using old fashioned steam trains in the animation clip was born

during a discussion of Werner Benger with Sascha Rieger and Susanne Milde from

MildeMarketing [Mil06].

The opera was performed for ten days in Berlin at the Bebelplatz (in front of

the “Staatsoper unter den Linden”), next to the Einstein exhibition running over

a longer period in this year. The spectacle was received very well by the audience



Rendering Black Holes in Maya 43

Figure 4.12: Out- and Inside the Dome

and the number of visitors increased every day. Of course Alexander and I had to

experience it ourselves. Figure 4.12 and Figure 4.13 give an impression of the event.

Figure 4.13: Impression of the Performance



Chapter 5

Future Work

This work can be extended in several ways: using a better approximation for the

curved rays for example. A stepwise linear function would make the area closest to

the black hole look more realistic. It also would be possible to implement an exact

solution in the shader. That would not solve the problem of the seamless integration

in the scene, though.

Correct red and blue shift would be a nice extension. Together with this im-

plementation an interesting problem is to find a satisfying mapping between wave-

length, i.e. a colour in nature, and an RGB colour value used for the internal colour

representation.

Porting the shader to Mental Ray would be of much use, because this rendering

engine is superior to the software rendering engine of Maya and is integrated in

different professional 3D packages. Thus, the shader also could be employed by

users that are familiar with Softimage or 3dsMAX.
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Appendix B

MEL-Source Code

Listing B.1: AERelativisticBlackHole.mel
1 g l oba l proc AERelat iv i s t i cBlackholeShaderTemplate ( s t r i n g $nodeName )

2 {

3 AEswatchDisplay $nodeName ;

4

5 edi torTemplate −beg inScro l lLayout ;

6

7 edi torTemplate −beginLayout ”Control Attr ibutes ” −c o l l a p s e 0 ;

8 edi torTemplate −addControl ” i r ” ;

9

10 edi torTemplate −endLayout ;

11

12 edi torTemplate −beginLayout ”Render Attr ibutes ” −c o l l a p s e 0 ;

13 edi torTemplate −addControl ”cam” ;

14 edi torTemplate −addControl ” rao ” ;

15 edi torTemplate −endLayout ;

16

17

18 edi torTemplate −beginLayout ”Center Attr ibutes ” −c o l l a p s e 1 ;

19 edi torTemplate −addControl ”bxc ” ;

20 edi torTemplate −addControl ”byc ” ;

21 edi torTemplate −addControl ”bzc ” ;

22 edi torTemplate −endLayout ;

23

24 // i n c l ude / c a l l base c l a s s /node a t t r i b u t e s

25 AEdependNodeTemplate $nodeName ;

26

27 edi torTemplate −addExtraControls ;

28 edi torTemplate −endScrol lLayout ;

29 }
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Appendix C

Final Notes

This document was created with LATEX.

All trademarks used are properties of their respective owners.

A pdf of the thesis can be found at

http : //www.rittertec.at/marcel/bakk/bakk bh.pdf .

Information about the up to date version of the plug-in can be found at

http : //www.rittertec.at/blackhole.
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