
Leopold Franzens University
Innsbruck

Department of Computer Science
Interactive Graphics and Simulation Group

PhD Thesis

Geometric Reconstruction and
Visualization of Point Clouds by

Second Order Tensor Neighborhoods

Dipl.-Ing. Marcel Ritter, BSc

supervised by
O. Univ.-Prof. Dr. Matthias Harders
O. Univ.-Prof. Dr. Sabine Schindler

February 18, 2021

Abstract

Point cloud data structures are widely used due to their application in data cap-
turing, e.g. by depth cameras and laser scanners, and in physically based particle
simulation. Typically, point cloud algorithms operate heavily in local neighbor-
hoods and employ accelerating spatial data structures, such as grids or trees. In
this thesis a second order tensor view on point cloud neighborhoods, similar to
a covariance, is introduced and analyzed. Based thereon, computational perfor-
mance was optimized, continuous geometries, such as lines, were reconstructed,
and point cloud visualization was enhanced.

Strategies to optimize the tensor computation were explored by utilizing differ-
ent spatial data structures on CPU and/or GPU: kd-tree, octree, uniform grid cell
hashing and sorting, curvilinear grid filling, and a screen space based technique.
These are tailored to different use cases, i.e. full numerical computation, visualiza-
tion of fine grain point clouds, and visual optimization by vertex clustering. The
grid hashing yielded a speed up of about 500 compared to a naïve parallel tree
based implementation, also taking advantage of heterogeneous hardware systems.

An algorithm to reconstruct lines in noisy point clouds was developed and
analyzed in depth. An eigenvector streamline integration of a vector field – derived
from mixing eigenvectors at optimal neighborhood radii and angular weighted
directions – reconstructs lines by merging multiple line lets. Therefore, a multi
scale tensor was introduced to identify optimal radii, to detect start points for
the integration, and to compute a novel noise rate. A comparison to a recent
reconstruction method showed that it can compete in terms of quality as well as
performance and, moreover, supports 3D line reconstructions.

A new visualization method for the multi scale tensor via color mapped images
is utilized to reveal and optimize different choices within the tensor computation,
i.e. weighting functions and points of reference. Further, point cloud data were
explored by a single scale tensor visualization approach stemming from diffusion
tensor magnetic resonance imaging. Examples are demonstrated on data of air-
borne light detection and ranging laser scans and particle simulations of an evolving
cosmos including star birth modeling in gaseous regions of galaxy clusters.

Contents

1 Introduction 7

2 Related Work 13

3 Curved Line Reconstruction 23
3.1 Preliminaries . 23

3.1.1 Second Order Neighborhood Tensor 23
3.1.2 Vector Field Integration . 25
3.1.3 Weighting Functions . 27
3.1.4 Neighborhood Centroids . 28
3.1.5 Multi Scale Geometric Measures 29
3.1.6 Reconstruction and Visualization 31

3.2 Publications . 32
3.3 Extensions . 52

3.3.1 Comprehensive List of Parameters 52
3.3.2 Line Endings . 53
3.3.3 Test Geometry Creation – Curve Sampling 54
3.3.4 Multi Scale Measure Graphs 55
3.3.5 Weighting Experiments . 56
3.3.6 Centroid Revisited . 60
3.3.7 Separated Noise Rate Performance 64
3.3.8 Fourth Order Neighborhood Tensor 68

4 Computational Performance Optimization 69
4.1 Preliminaries . 69

4.1.1 Tree Neighborhood Searches 69
4.1.2 Grid based Methods . 71

4.2 Publications . 75

5 Application 103
5.1 Preliminaries . 103

5

5.1.1 Enhancing Point Cloud Visualization 103
5.1.2 Geometric Reconstruction 109

5.2 Publications . 110

6 Discussion 123

7 Conclusion 133
7.1 Future Work . 135

8 Acknowledgements 139

A Appendix 149
A.1 Visual Analysis Tool Implementation 149
A.2 Extended Parameters . 152
A.3 Closest Point on Skew Lines . 156
A.4 Weighting Functions . 157

1 Introduction

A point cloud is a set of points in spacetime. Point clouds are used nowadays
as digital spatial representation of geometric objects, mostly in 3D space, e.g.
in numerical simulations or as output from sensor devices. In simulation, parti-
cle methods have become widely used due to the improvements in parallel GPU
computing. Pure particle methods, such as the smoothed particle hydrodynamics
introduced by Monaghan (1988) have been picked up by the graphics community,
see e.g. Solenthaler and Pajarola (2009). The position based dynamics presented
by Macklin and Müller (2013) and, e.g. Bender et al. (2014) also operates on parti-
cles only. Hybrid methods mix particles with grid structures and were introduced
by the physics community, as e.g. the particle in cell method ’pic flip’ by Brack-
bill et al. (1988). They have also been used in computer graphics, e.g. by Zhu
and Bridson (2005). Further, the material point method makes use of a particle
in cell approach; see Sulsky et al. (1994) for an early engineering publication and
Wang et al. (2020b) for recent advances by the graphics community. Those sim-
ulation approaches operate heavily on point clouds. In observation, points result
from scanner devices: light detection and ranging (LiDAR) or camera based stereo
matching methods generate point clouds from real world geometry. In LiDAR laser
scanning points are computed by the known sensor position, laser direction, and
time of flight of a laser echo see, e.g Toth and Jóźkòw (2016) and Foix et al. (2011).
The Earth sciences and industry uses such devices for surveying or as sensors for
autonomous cars. In camera based stereo matching, the 3D positions of correlating
pixels in a stereo pair of images are computed; similar to the human visual system
– each image representing one eye. Thus, 3D point clouds are created from images.
Even, mobile phones come with multiple cameras to enable depth capturing. The
stereo matching process is presented e.g. by Scharstein et al. (2001).

Point clouds are especially interesting in 3D (or higher dimensional) space.
In 2D many algorithms can operate on images, and do so very effectively. In
3D the amount of data to represent information, e.g., in dense voxels becomes
quickly unfeasible when domains get larger or resolutions higher. Here, sparse
data representations have to be used, such as a point cloud. Data is stored only
at certain explicitly specified locations. Thus, they also have been targeted for

7

8 CHAPTER 1. INTRODUCTION

data compression of spatial data, e.g. to compress vector fields by Skala (2017)
or for image compression by Daropoulos et al. (2020). Further, current research is
carried out on point cloud compression itself, see Schwarz et al. (2019) or Wang
et al. (2020a). For grid based images several algorithms exist to compute local
features, such as edges or corners. They are employed in more complex tasks such
as tracking or object detection. Here, deep learning has overtaken the performance
for higher level tasks via abstracting important local and multi scale image features
automatically, see e.g. Wei Shen et al. (2015) or Liu et al. (2020). In deep learning
point clouds have not been as intensively targeted for investigation as images. But
they are increasingly employed as data sources. For instance, graph based networks
have been applied to enable recognition tasks on point based data e.g. by Qi et al.
(2017) and Sheshappanavar and Kambhamettu (2020).

Independent of the creation of points clouds, often the point neighborhood
information is either lost, insufficient, or not available (e.g. not stored or samples
reordered). However, the neighborhood can be used to enrich the point cloud
information, i.e. to enhance the visualization by highlighting geometric properties
or by enabling lighting computation via an estimated “surface” normal. Especially
when working with captured data the reconstruction of the original geometry from
point sets is of interest, e.g., in the application of surveying and special effects. In
the former, maps of landscapes, or the mapping of buildings and construction sites,
and in the latter the creation of virtual equivalents of real world scenes, objects,
or characters is of interest.

In this work, a novel method to analyze point cloud neighborhoods has thus
been introduced and its application investigated. More precisely, a local 3D multi
scale feature was derived, visualized, analyzed, and applied to a higher level task:
3D curve reconstruction. This work direction evolved from earlier work dealing
with spacetime curvature visualizations, see Ritter and Benger (2010), as well as
curvature computations on polyhedral meshes, see Mathews et al. (2010).

Due to this, a tensor formulation capturing the directions of point neighbors has
been introduced, which is an equivalent of a covariance matrix. Further, weighting
is employed to enhance numerical stability in noisy data. The method is then ex-
tended to multiple scales, especially to reduce user parameters and strengthen the
automation of algorithms. The multi scale tensors are then used for visualization
and geometric reconstruction, via eigenvector stream lines. The eigenvector stream
line approach was inspired by techniques used in the medical imaging domain of
fiber tracking of neurons in the human brain. A line reconstruction algorithm is
developed and analyzed. Generally, neighborhood computations of unstructured
data are costly in terms of run time performance. A nearest neighbor search by
a brute force distance query, a naive implementation, results in a run time of
O(n2) for a 3D point cloud. Thus, approaches have been developed to improve

9

the performance in the past by inventing several data structures and algorithms to
speed up spatial searches. In this thesis, a number of performance optimizations
are implemented and analyzed for the case of the tensor neighborhood also using
modern GPU/CPU architectures. In short, the main contributions of the thesis
are:

1. A multi scale 3D tensor based point cloud neighborhood formulation.
2. An analysis of different centroids and weighting functions used in the tensor

computation.
3. An algorithm to reconstruct 3D lines from point sets based on neighborhood

analysis and an eigenvector based stream line integration.
4. An interactive visualization, analysis, and reconstruction tool, using an ex-

tracted core library, also provided open source.
5. Performance optimizations of the neighborhood search using the OpenGL

pipeline and a heterogeneous GPU/CPU pipeline via OpenCL.
6. Employing tensor splats to enhance the visualization of point cloud data.
7. An application to reconstruct power cables of airborne LiDAR laser scans.

The main research questions – striven to be answered – are:

1. Is an eigenvector streamline based method on top of a neighborhood tensor
feasible to reconstruct lines in point cloud data?

2. How sensitive is the line reconstruction algorithm to noise? How is it made
robust?

3. What is the effect of using different centroids and weighting functions in the
tensor computation?

4. What geometric features and details can be reconstructed?
5. How far can user dependent control parameters be removed to allow a

(nearly) fully automated reconstruction process?
6. What is the computational bottleneck and can it be optimized or tackled

by GPU computation?
7. Can a tensor visualization method stemming from spacetime curvature be

employed to enhance point clouds visually by highlighting its neighborhood
properties?

The structure of the thesis is organized in a cumulative style. Paper publications
are categorized and grouped in three main chapters: line reconstruction method,
performance optimization, and application. Each chapter starts with an own in-
troduction into the topic, called preliminary, and then presents the original paper

10 CHAPTER 1. INTRODUCTION

publications. Each paper provides its own method, related works, results, dis-
cussion and conclusion. The line reconstruction method chapter of the thesis is
extended by an additional section showing material that was not added to any
publication due to page count limitations, lesser relevance, or not fitting optimally
to any paper’s focus. After this introduction follows an overview section of related
work presenting the most influencing works and utilized technologies of this re-
search activity. After the main contents, the presented results and methods are
critically discussed. The thesis is then finalized by a conclusion and future work
section.
Following paper publications build the cumulative part of the thesis:

Ritter et al. (2021a)∼ Ritter M., Schiffner D., Harders M. (2021) Robust Recon-
struction of Curved Line Structures in Noisy 2D/3D Point Clouds. Visual
Informatics, under review.
Content: A point cloud reconstruction method is presented for 3D curves.
A hybrid vector field – computed based on geometric measures of a second
order tensor multi scale neighborhood – is integrated by eigenvector stream
lines. Different parameters are tested on examples and automated parameter
runs using developed error measures. Results are compared to a recent recon-
struction method and an application is demonstrated on LiDAR data.
Contribution: conceptualization (80%), methodology (85%), software (80%),
validation (100%), investigation (100%), visualization (100%), data prepara-
tion (100%), draft writing (80%).

Ritter et al. (2021b)∼ Ritter M., Schiffner D., Harders M. (2021) Visual Analysis of
Point Cloud Neighborhoods by Multi-Scale Geometric Measures. Eurographics
Conference, conditionally accepted.
Content: A visualization technique for multi scale second order tensor based
geometric features of point cloud neighborhoods is introduced. Color maps of
shape factors are used to illustrate test geometries as well as a LiDAR exam-
ple data set. The influence on the geometric measures by employing different
weighting functions and points of reference are presented as well as the effect
of noise.
Contribution: conceptualization (90%), methodology (90%), software (70%),
validation (100%), investigation (100%), visualization (100%), data prepara-
tion (100%), draft writing (90%).

11

Grasso et al. (2015)* Grasso I., Ritter M., Cosenza B., Benger W., Hofstetter G.,
Fahringer T. (2015) Point Distribution Tensor Computation on Heterogeneous
Systems. Procedia Computer Science 51, p. 160–169, Elsevier
Content: The neighborhood tensor was optimized for computation on a het-
erogeneous compute system utilizing CPU and GPU resources. A grid hashing
and bitonic sorting was chosen and implemented in OpenCL. Numerical results
were compared to the reference implementation. Three methods for schedul-
ing compute jobs to the devices were investigated. A speed up of about 500
was achieved, as compared to the reference implementation (GPU vs. CPU).
Contribution: conceptualization (25%), methodology (25%), software (30%),
validation (30%), investigation (10%), visualization (50%), data preparation
(100%), draft writing (20%).

Schiffner et al. (2014)* Schiffner D., Ritter M., Steinhauser D., Benger W. (2014)
Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds.
In: Proceedings of SIGRAD 2014, Visual Computing
Content: A curvi linear grid based point clustering for raw point clouds was
derived employing accumulation per cell in an OpenGL compute shader. Ten-
sor based shape factors are used in a point re-distribution step. Then, only
cell representatives are drawn. The method reduces the point data for avail-
able GPU resources in real time, demonstrated on simulation and LiDAR data.
Contribution: conceptualization (50%), methodology (50%), software (10%),
validation (50%), investigation (33%), visualization (80%), data preparation
(75%), draft writing (40%).

Schiffner et al. (2013)* Schiffner D., Ritter M., Benger W. (2013) Fast Normal
Approximation of Point Clouds in Screen Space. In: WSCG 2013 Conf. on
Computer Graphics, Visualization and Computer Vision Communication Pa-
per Proceedings, p. 21–28
Content: Three methods to compute normal vectors of raw point clouds in
an OpenGL fragment shader in real time are investigated. A method for ob-
taining the covariance from a multi sample depth buffer is derived. Its minor
eigenvector is employed as a normal vector. Results are validated on artificial
point sets as well as on LiDAR data.
Contribution: conceptualization (50%), methodology (25%), software (10%),
validation (33%), investigation (25%), visualization (40%), data preparation
(25%), draft writing (38%).

12 CHAPTER 1. INTRODUCTION

Ritter et al. (2012)* Ritter M., Benger W., Biagio C., Pullman K., Moritsch H.,
Leimer W. (2012) Visual Data Mining Using the Point Distribution Tensor.
In: VisGra – ICONS 2012, IARIA, p. 218–222
Content: The tensor splat visualization method was applied to the neigh-
borhood covariance. First, artificial point clouds were shown. Then, data
stemming from geoscience – airborne LiDAR and coast line shapes – were
investigated. Finally, a concept for parallelization employing CPU and GPU
resources was introduced.
Contribution: conceptualization (50%), methodology (40%), software (80%),
validation (50%), investigation (60%), visualization (100%), data preparation
(60%), draft writing (60%).

Ritter and Benger (2012)* Ritter M., Benger W. (2012) Reconstructing Power
Cables From LIDAR Data Using Eigenvector Streamlines of the Point Distri-
bution Tensor Field. Journal of WSCG 20, p. 223–230
Content: A line reconstruction method was introduced. Its concept is based
on fiber tracking in diffusion tensor imaging. It was adjusted and extended. A
line was created by stream line integration in an eigenvector field of a weighted
covariance. Integration schemes and weighting functions were tested on arti-
ficial point sets and, finally, a power cable was reconstructed in a LiDAR scan.
Contribution: conceptualization (70%), methodology (90%), software (90%),
validation (10%), investigation (100%), visualization (100%), data prepara-
tion (100%), draft writing (95%).

The works marked by a superscript tilde ∼ are submitted manuscripts and have
not been published, yet. Similarly, a superscript asterisk ∗ marks published mate-
rial. In the following text, any citations to these papers are indicated with those
symbols.

2 Related Work

Each publication denoted above holds its own section of related work. Here, a
selected subset of the most important and influencing ones is presented, and the
relation to our work indicated.
Diffusion Tensor Imaging: The 3× 3 covariance, or tensor neighborhood, can
be decomposed in three eigenvectors and eigenvalues. Westin et al. (1997) intro-
duced three shape factors computed based on the tensor’s eigenvalues: linearity,
planarity, and sphericity. These describe the shape of an ellipsoid which can be
used to visually represent eigenvectors and eigenvalues. They form a barycentric
coordinate system – always summing up to 1.0 – directly applicable in visual-
ization algorithms. In Westin’s work the second order tensors describe diffusion
directions of water in the human brain; derived from magnetic resonance imaging
(MRI). He uses gray-scale image slices enriched with colored ellipsoids to visualize
diffusion directions of the brain. Brain regions can be classified by those directions,
i.e. white matter and grey matter; Kolb and Whisaw (2015). White matter mainly
consists of elongated axons and has a dominant diffusion direction. In contrast,
gray matter consist of cell bodies and other structures leading to quite uniform
diffusion directions. Thus, sphericity is high in gray matter and linearity is high in
white matter with axons going in similar direction. Either planarity or sphericity
is high at axon crossings. In Westin et al. (2002) an additional arrow and marker
is added to the ellipsoids. Also, brain data is analyzed at larger scales by summing
up the tensors over larger spatial regions. They argue, that large scale structures
can then be classified because summing up diffusion tensors yields better direc-
tional representations, instead of summing up the direction vectors. In this thesis,
this idea is employed to the case of point set neighborhoods in 3D space: from a
central point of reference the directions to the neighbors are converted to second
order tensors and then summed up to an averaged tensor; Ritter et al. (2012)*
and Benger et al. (2012) show visualizations of such point distribution tensors on
astrophysical and geoscientific point set data. The there employed visualization
technique is an extension of tensors splats introduced in Benger and Hege (2004).
Tensor splats are an enhancement of drawing ellipsoid as second order tensor rep-
resentatives. They allow visual blending/merging by using transparency, coloring,

13

14 CHAPTER 2. RELATED WORK

and texturing. Our proposed technique uses Gabor functions (Bergeaud and Mal-
lat (1998)) for improved transparency scaling; highlighting dominant eigenvector
directions by visually combining point wise splats to elongated fibers.

In the analysis of the diffusion tensor MRI (DT-MRI) the so called fiber trac-
tography was introduced to reconstruct connected regions with high linearity of
the diffusion tensor field. A line following the direction of the major eigenvector of
the diffusion tensor, thus, reconstructs paths of axons in the human brain; Basser
(1998) and Basser et al. (2000). Basser uses the major eigenvector of the diffusion
tensor as a tangent to the line. By solving an initial value problem, starting from
an initial location, lines are traced along the tangent vector field. Algorithmically,
this is an eigenvector streamline; a first order integration line. Basser states that
without a priori knowledge fiber tracts cannot overcome regions of crossings reli-
ably but larger scale features can be reconstructed well. He uses a Runge-Kutta
method for integration and has the advantage to operate on a uniform grid dis-
cretization where higher order interpolation schemes can be applied in a straight
forward way. In this thesis linear structures in point clouds are reconstructed by
employing such an eigenvector streamline integration to follow dominant eigenvec-
tor directions. Also, Runge-Kutta schemes were implemented. However, the mesh
free structure of the point set data required different approaches for interpola-
tion. Kernel based distance weighting was employed for interpolating point based
data; similar to the method used in smooth particle hydrodynamics Monaghan
(1988). Ritter and Benger (2012)* reconstructs lines discretized by point sets of
LiDAR data via eigenvector streamlines, Runge-Kutta integration, and mesh free
interpolation.

Geometric reconstruction – surfaces: Hoppe et al. (1992) is an early work on
reconstructing surfaces from an unordered set of points. They employ covariance
matrices and estimate the tangent planes. They define a piece wise signed distance
function approximating the surface. Therefore, the orientation of the tangential
plane need to by consistently aligned, which is achieved using a graph structure.
The distance function itself can be discontinuous, but isosurface based reconstruc-
tion compensates for that. They shortly mention an effect of choosing different
neighborhood sizes for the covariance (k-neighbors) dependent on noise in the data
but do not go further in that direction. In this thesis, a weighted variant of the
covariance matrix is employed. The need for consistent orientation is avoided by
locally flipping eigenvectors during stream line integration. Berkmann and Caelli
(1994) employ the 3D covariance as a basis to compute 2D covariances of normal
vectors projected onto the tangential planes to create a second fundamental form,
equivalent to a Gauss map. They use those to detect jumps, edges as well as pla-
nar, parabolic, and curved regions in range image data. They also point out that
this improves noisy data handling in contrast to direct curvature or surface nor-

15

mal definitions. As the data targeted in this thesis may be very noisy the chosen
covariance approach was further improved by distance weighting. No consistent
parameterization on the geometry was required on the simple line geometry, and
thus no work in the direction of mappings compatible with differential geometry
was carried out. Taubin (1995) estimates principal curvature and principal direc-
tions of triangular meshes based on computing the eigenvectors and eigenvalues
of a matrix representation of a curvature tensor. Though not directly related
to point cloud reconstruction, the publication motivated the approach to encode
point neighborhood directions into a tensor representation. McIvor and Valken-
burg (1997) compare different methods to estimate normal vectors and curvatures
on surfaces. They were interested in the performance with varying amplitudes
of added noise, comparing several methods; among them finite differences and
quadratic fitting variants. They also introduce a covariance technique but do not
investigate it further. This thesis also uses a controlled test bed with added noise
to quantify the resulting performance. Alexa et al. (2001) approximate a surface
from a set of points by small local patches using a moving least square projec-
tion, i.e. the projection plane related to the covariance. They enable interactive
rendering of smooth surfaces. In under sampled regions new points are created
on the surface approximation. Thus, they visually blend points to a smooth sur-
face using the rendering pipeline. They experiment with the bandwidth radius or
patch size of the approximation and create different levels of smoothness. They
state that the patch size could be dependent on local feature sizes or noise lev-
els, but do not investigate further. In this thesis the feature size in noisy data
is of special interest. The optimal scale selection is a key in the line reconstruc-
tion approach and the visual analysis of the multi scale images. Their idea of
changing smoothness levels was further extended in other work. The proposed
sphericity feature was used before in geometry reconstruction, e.g. in Pauly et al.
(2002), where it is related to surface curvature. They use the measure to steer
the number of points for a low resolution resampling of a high resolution point
based surface. More points are generated in high curvature regions. Further, they
use a moving least squares (MLS) surface for local surface estimation, which orig-
inally employs a static neighborhood size. They extend this towards a dynamic
size by employing the k-nearest radius divided by 3 as radius for a local surface
neighborhood. Different strategies on choosing the k-neighborhood are presented,
e.g. using hierarchical subdivision. Also, an error measure to compare point sets
via MLS surface resampling by average and maximum (Hausdorff) distances is
introduced. The dynamic size is extended to a multi scale space of the spheric-
ity measure in Pauly et al. (2003) which allows to control the smoothness of the
reconstruction. Further in Pauly et al. (2006), a multi scale decomposition of the
surface representation is carried out: summing finer details to a smooth base rep-

16 CHAPTER 2. RELATED WORK

resentation. Regarding these works, the targeted point clouds stem from sensor
data, but come with low noise rates. This enables the linkage of the sphericity
with the surface curvature. With larger amounts of noise, an initial filtering could
become necessary. Otherwise, more points will be placed in high noise regions
during resampling. In this thesis the same shape factor idea is employed to esti-
mate the noise rate in the data by analyzing multiple scales. Using fixed k-nearest
neighborhoods was avoided as they denote a dependency on the sample rate with
respect to geometric feature sizes. Still, a minimum sampling should be available
for robust automated reconstruction. Average and Hausdorff distances on sampled
line geometries are employed as part of the proposed error metrics. Stream lines
are integrated by a constant step size and the ground truth data sampled by a sim-
ilar resolution. Ohtake et al. (2005) also reconstruct from point sets. They finally
create a triangulated mesh based on covering spheres. First, data is preprocessed
to compensate for varying sampling densities and measurement errors. Normals
are compute by utilizing Hoppe et al. (1992). Then an adaptive sphere coverage
is created and auxiliary meshes based on sphere intersections. A quadratic error
function based on a weighted covariance is minimized to compute the adaptive
radii of the covering spheres. The method is tested on point clouds with low noise.
A limitation is sparsely sampled regions. In this thesis the SPH kernels are of a
similar shape. Berger et al. (2013) summarize and benchmark ten point based sur-
face reconstruction methods. They show that there was no superior method found
yet with respect to all test cases including noise and data holes. Global methods
are more robust in case of noise, while local methods perform better without. The
work derives error measures via a point to surface correspondence. Thereof av-
erage and maximum distance and angular errors are computed. Those measures
are utilized to evaluate the test cases. In this thesis similar error measures are
developed for line reconstruction; and further extended with criteria to describe
the completeness of reconstructions. The latter was not relevant for Berger et
al. since some of the tested reconstruction methods required a closed surface (im-
plicit surface formulation) and objects were valid manifolds with little noise and
good sample coverage. Similarly, in this thesis well defined test cases were set up
for exploration, automated parameter runs, and method comparison. Among the
ten reconstruction methods is the work by Guennebaud and Gross (2007). They
introduced a sphere fitting approach by algebraic instead of geometric spheres.
Thus, a sphere is represented as isosurface of a scalar field. They include a smooth
neighborhood size function and a normal vector into a constraint minimization
problem. The adaptively fitted spheres locally reconstruct the surface. Based on
this geometric representation Mellado et al. (2012) investigated point clouds, not
only for an adaptive surface reconstruction, but also with respect to multi scale
features. They compute the fitted algebraic sphere over multiple scales and create

17

a scale space, including positive and negative curvature, a fitness value (based on
all distances towards the fitted sphere in the neighborhood), the point distance,
and the normal vector. Further, they investigate derivatives in the scale space
and introduce a variation measure, enabling a simpler bandwidth or feature scale
identification. They compare their scale space to a covariance based scale space
introduced by Pauly et al. (2003). The scale space derived in this thesis is also a
continuous covariance scale space, but it includes linearity (or planarity) together
with sphericity. The fitness function of Mellado et al. (2012) is related to spheric-
ity, but this is not directly included in their scale space visualization. Also, they
require normals on the unordered points, which can be costly to compute, and
which becomes increasingly difficult at high noise rates or for 3D curves. They
show feature images of the scale space, which show some similarity to the multi
scale feature images (MSFIs) in Ritter et al. (2021b)∼. However, these are differ-
ent, as they show positive and negative curvature, whereas the three shape factors
are visualized in the MSFIs. Moreover, all shape factors are related to curvature
but also to noise. The fitness function they derive is related to sphericity and noise,
but not directly included in the images. In contrast, our MSFIs do not include
any information about the sign of a possible curvature. They employ their scale
space to highlight features on surfaces, and also show an application of smooth-
ing a curve-like point cloud with varying noise (via bandwidth selection guided
by the multi scale space). This is related to the optimal radius and direction se-
lection in Ritter et al. (2021a)∼, however, the demonstrated case is on a densely
sampled smooth 2D curve with quite low jitter noise. In contrast, this thesis in-
vestigates considerably higher noise rates, and examines geometric features on 2D
and 3D curves. Lejemble et al. (2020) extends on Mellado et al. (2012) for planar
segmentation and surface reconstruction at multiple scales. They use the previ-
ously introduced scale space to cluster points at different scales. They link those
clusters to reconstructed surface components to build a hierarchy. Components
present over multiple scales are the main features of the object. They investigate
the stability of the method, and develop an interactive tool, for visualization of
stable structures, interactive segmentation, and reconstruction. They employ a
multi scale analysis for an interactive 3D surface reconstruction tool. This relates
to Ritter et al. (2021a)∼ , where an interactive tool based on a multi scale analysis
is developed, but there the focus is on 3D curve reconstruction in high noise.

Geometric reconstruction – lines: Devore et al. (2013) focused on surface
reconstruction of data stemming from LiDAR surveying. Besides describing error
metrics, they work on planar and quadratic fitting in cube subspaces. Cubes are
found by an octree data structure, with further subdivision based on error and
size criteria. They reconstructed different scenes/objects, such as a mountain,
a building, an urban street scene, or a light pole. Moreover, they state that the

18 CHAPTER 2. RELATED WORK

topic of surface reconstruction did not get much attention on this kind of surveying
data, yet. This observation by Devore et al. was another motivation for our own
investigation. Moreover, they attempted to reconstruct poles with quadratical
fitting surfaces (see their Figures 13 and 14), which does not appear best suited.
In general, a line, maybe including an additional “cylinder” radius, would be a more
compact representation in that case; or a volumetric representation more fitting
for trees and bushes. Nevertheless, their work is related to the line reconstruction
method developed in this thesis, i.e. in Ritter and Benger (2012)* and Ritter
et al. (2021a)∼. An extension of the geometric representation from a surface to
lines and volumes, is especially fitting for the properties captured by the point
distribution tensor’s shape factors, see Ritter et al. (2021b)∼. In addition to this,
the cube clustering approach of Devore et al.– selecting locally reconstructable
regions – also relates to the real time clustering approach presented in Schiffner
et al. (2014). There the forming of “planar” curvilinear grid cells is encouraged
by moving point references to neighbored cells to increase planarity. This could,
e.g. improve on the “intersections” of the ground with the buildings of Devore
et al. (2013) by better adjusting to the not axis aligned edges; without any over
smoothing (as visible in their Figures 15 and 18).

Next, a few essential publications of line reconstructions from a set of points
are surveyed. Zeng et al. (2008) introduce the parameter free algorithm DISCUR
to reconstruct lines from a given 2D set of points. Points are directly connected, by
realizing two main criteria. First, close points are more likely to be connected and,
secondly, smooth lines are preferred. Algorithmically, a Delaunay triangulation is
performed and, edges selected and merged into lines based on statistical criteria.
They are able to reconstruct multiple lines, as well as lines with sharp corners, and
open or closed curves. Further, they provide a comparison to three other meth-
ods: CRUST, NN-CRUST, and GATHAN. As they focus on connecting points to
reconstruct lines, the approach falls into a different class of algorithms. The point
sets are rather sparse and are more susceptible to noise. However, the illustrated
examples only include distribution noise. They demonstrate the algorithm per-
formance by first sampling ground truth lines, which are then reconstructed. In
Ritter et al. (2021a)∼ artificial geometries are created in a similar fashion; but
extended towards additional options for noise distortions. Further, points are not
connected directly in our introduced method. Only the initial seeds of stream line
integration are chosen from the set of input points. Lin et al. (2005) use B-splines
to reconstruct noisy 2D point clouds. They first compute a number of rectan-
gles to divide the point set into sub spaces based on a uniform grid. A sampling
radius is evaluated by Delaunay triangulation. The investigated point clouds are
densely sampled with a large amount of out-of-axis noise. For each fitted rectangle
quasi centric points are found. A “left” and “right” border of the point cloud is

19

constructed as B-splines, and by taking opposite control points of the borders a
final central interval B-spline curve is created. While the data sets are quite noisy
locally, they have very defined borders; there is no outlier noise present in the
data sets. However, they are able to reconstruct 2D curves with varying sample
rates and varying jitter noise. The B-spline approach provides a smooth curve
of the point cloud axis. The algorithm differs considerably from the approach
in this thesis; but still, some similarities exist. Their subdivision into rectangu-
lar subspaces provides a local view; in this thesis, the development started in a
very small local scale, which was later extended to larger overlapping subspaces
for analysis. Global methods, such as the Delaunay triangulation utilized by Lin
et al. (2005) and Zeng et al. (2008) were avoided, to preserve scalability for large
data and allow fine grain parallelization. Philsu and Hyoungseok (2010) introduce
a natural distance metric – a Gauss kernel – to grow from an initially selected
point. This creates a reconstructed line. They use a principal component anal-
ysis to compute the initial direction from the neighborhood. They use a factor
to control the “diffusion” and provide limits to the factor. Essentially, distance
and the weighted off axis assist candidate selection, to grow from an initial point.
In Ritter et al. (2021a)∼ weighting functions are also employed in many aspects.
The off axis weighting of Philsu and Hyoungseok (2010) relates to the angular
weighted direction proposed in our work. However, the latter is independent of
distance, within a close neighborhood. Moreover, in our work distance dependent
directions are provided, according to the best multi scale major eigenvector direc-
tions, adjusted by a radial distance weighting function. Öztürk and Hasirci (2013)
introduce a bandwidth selection for varying noise. They are able to optimize the
regression of a third order polynomial to reconstruct the axis of a point cloud
with varying thickness and curvature. They use a covariance matrix to analyze
direction and “elongation”; also, they normalize the eigenvalues by dividing with
their sum. A local nearest neighbor KNN search is performed until the normalized
major eigenvalue exceeds a threshold of 0.9. Points are then ordered according to
the eigenvector, and the regression lines computed. Subsequently, the point cloud
is thinned and reconstructed. The method allows to handle crossings as well as
point clouds with varying noise. Their elongation measure directly relates to the
linearity of the shape factors of the point distribution tensor used in our work.
Their normalization is similar to our normalization of the shape factors. However,
the approach of Westin et al. (1997) creates a barycentric relation of the shape
factors. Moreover, in very noisy data a limitation of the elongation with the 0.9
threshold might lead to an improper bandwidth selection. In the proposed method
scoring function were preferred to decide on “good” elongated bandwidths (radii for
optimal linearity) to enable relative comparisons and selections. Ohrhallinger and
Wimmer (2019) recently presented a method extending their earlier HNN-CRUST

20 CHAPTER 2. RELATED WORK

line reconstruction. Their Fitconnect connects points in noisy 2D point clouds
resulting in a clean line manifold. Different scales are considered in the local view
to identify the size of noisy clusters. The algorithm is designed for 2D manifold
geometries. Its core – preferring smoothness – was extended to close sharp cor-
ners in a second step. They successfully reconstruct 2D point clouds with varying
noise and varying feature scales. However, in contrast to our proposed method
they cannot handle crossings, use only a ground truth distance metric (coverage
or completeness are not considered), and did not extend their method to 3D. The
work in Ohrhallinger and Wimmer (2018) further extends the (later published)
ideas in Ohrhallinger and Wimmer (2019). The result of Fitconnect is additionally
smoothed, and points of the reconstruction are constrained to their normals and
shifted to optimize for a minimal global angle. As a result, the zigzaggy nature of
the reconstructions is improved.

Compared to the mentioned related work for line reconstruction Ritter et
al. (2021a)∼ further extends on applied noise types and error measures. Further,
a different way to analyze for optimal feature scales via multi scale geometric fea-
tures based on weighted covariances is proposed. The general approach of stream
line integration separates the line representation from the underlying point cloud
geometry; but still relates to some of the above utilized criteria for connecting
points based on distances and angles. Further, our proposed method works in 2D
and 3D, which is demonstrated on several test geometries.

Local point neighborhoods: Natale et al. (2010) utilize similar shape factors
in 3D point clouds of LiDAR flash images and analyze local geometric properties
(see their Figure 16). Based on line, plane, and volume criteria, a neural net-
work decides on feature classification. The network comprises several layers, each
representing a growing neighborhood size. The illustration is similar to the multi
scale geometric measures proposed in Ritter et al. (2021a)∼ ; extended to multi
scale feature images in Ritter et al. (2021b)∼. Lin et al. (2014) also worked on
point cloud classification; with a focus on airborne LiDAR laser scanning. They
make use of three equivalent eigenvalue-based shape factors for classification in a
covariance neighborhood. They propose a different formulation normalizing with
respect to the largest eigenvalue. Also, they introduce a weighting related to point
cloud density to stabilize the features. Moreover, they train a support vector ma-
chine classifier to label point clouds. Besides employing similar shape factors, they
replace the mean point of reference in their neighborhood by the geometric median
and achieve a 3% improvement for classification with respect to a classical PCA.
The geometric median was also proposed for multi scale feature images in our work
in Ritter et al. (2021b)∼ as it improves smoothness and reduces noise. Further,
a weighted extension of the geometric median also showed better performance in
the line reconstruction algorithm on LiDAR data. Weinmann et al. (2015) com-

21

pare different classifiers on LiDAR data and employ 21 geometric features; among
them the same shape factor as in Lin et al. (2014). They also include the sphericity
features as presented in this work. Further, they adjust the neighborhood sizes
to optimize for the “eigenentropy”; a Shannon entropy applied on eigenvalues of a
PCA. Finally, they suggest to use a random forest classifier with geometric features
in the size of the optimal neighborhood for the best trade off between run time
and classification quality. Lu et al. (2017) propose the geometric median to im-
prove noisy point clouds. They are able to preserve geometric features by updating
point positions and normals based on the L1 median. Especially, they are able
to better preserve edges and smooth regions. A similar preservation feature was
observed in our work, when employing the geometric median as centroid for the
covariance matrix computation. The multi scale features images exhibit smoother
regions and better defined edges. Next, Wendland (2005) proposes to use poly-
nomial radial distance functions with a compact support, i.e. the influence of the
function is limited by a maximum radius. The final approximation of a function
is obtained as a sum of the weighted compactly supported kernels. The compact
support thus transforms a global optimization problem into a local one. Also Skala
(2012) investigated using RBFs for reconstruction. He states that in many appli-
cations, functions, such as images or surfaces, are often over sampled. This fact
can be exploited to reduce the size of the system of linear equations to be solved
for an RBF (or CRBF) approximation. The resulting problem can be solved via
least squares or a singular value decomposition instead. This is demonstrated on
examples of image inpainting and surface reconstruction.

In this thesis, polynomial weighting functions were also included and investi-
gated as candidates for reconstruction optimization.

Neighborhood search: Husselmann and Hawick (2012) employ grid hashing and
sorting on agent based data (points). Their method performs well in multi GPU
systems. For sorting, Merge sort and Radix sort were performed on the GPU.
Grasso et al. (2015)* builds on this idea and generates a sorted and grid hashed
point cloud to speed up the range queries for neighborhood tensor computation.
The Radix sort is replaced by a Bitonic sort (Peters et al. (2011)); further op-
timizing on the previous method. Willmott (2011) extends to vertex clustering
in triangular meshes. His method enhances previous work by taking attributes
on the meshes into account. Vertices are not clustered if they do not share the
same attributes; e.g. the same material ID. This relates to our vertex clustering
approach presented in Schiffner et al. (2014)*. Especially, the idea of attribute
constraints led to including additional parameters, such as the planarity in the
point redistribution of cell clusters.

Data and visualization frameworks: The methods in Ritter et al. (2012)* and
Ritter and Benger (2012)*, as well as in Benger et al. (2012) were implemented

22 CHAPTER 2. RELATED WORK

in C++, on top of the vish visualization framework (see Benger et al. (2004)). In
vish, algorithms are organized as a graph of nodes. Each node is a software module
which can be reused by other algorithms, and be combined by visual programming
or scripting. This permits to concentrate on certain aspects or sub-tasks, with also
a number of existing – mostly visualization related – nodes provided. Further, it
allows to develop spatio-temporal algorithms independent of the underlying spatial
discretization. The visualization framework itself is built upon the fiber-bundle
data model (see Benger (2004)). It is a scientific data model, especially dedicated
to spatio-temporal data.

A HDF5 based format captures the fiber-bundle data model in files – the so-
called F5 format (see Ritter (2009)). HDF5 2020 (accessed 2020) is an open format
that is widely used in the academic field1. It stems from the high performance
computing community, targetting efficient and scalable data storage, easy access,
exchange, and sustainability. It is realized as a container format, in the back end
of academic software, e.g. for Matlab’s standard ’.mat’ files2. The F5 format adds
a scheme to the basic container layout dedicated to spatio-temporal data. It is
organized in seven hierarchical layers - similar to directories in a file system – and
follows principles of topology, differential geometry, and geometric algebra. The F5
stand-alone version was used in our work in Grasso et al. (2015)* for computational
investigations on heterogeneous platforms, that share multiple CPUs as well as
GPU cores for common computational tasks. The remaining publications: Ritter
et al. (2021a)∼, Ritter et al. (2021b)∼ Schiffner et al. (2013)*, and Schiffner et al.
(2014)*, use smaller stand-alone prototypes in OpenGL and C++.

1https://www.hdfgroup.org/solutions/hdf5
2https://www.mathworks.com/products/matlab.html (from version 7.3)

https://www.hdfgroup.org/solutions/hdf5
https://www.mathworks.com/products/matlab.html

3 Curved Line Reconstruction by
Tensor Neighborhoods

3.1 Preliminaries

3.1.1 Second Order Neighborhood Tensor

An n-dimensional tensor
˜
θ of ordermmaps the Cartesian product ofm n-dimensional

vectors to a scalar:

˜
θ : Rn × ...× Rn

︸ ︷︷ ︸
m

→ R. (3.1)

A tensor provides a multi-linear mapping1 and holds its own coordinate base. Any
freely chosen base can be transformed into that of a tensor, and vice versa. This
is especially useful for physical quantities as they can be represented with a tensor
independently of the global or other coordinate systems. Tensors are differentiated
by their order m: 0 – scalar, 1 – vector, 2 – matrix (second order), etc. When
tensors are dependent on space(-time) they are referred to as a tensor field. For
example, temperature on Earth can be represented as a tensor field of order 0 on a
sphere geometry. A displacement vector field on a finite element mesh is a tensor
field of order 1.

Second order tensors are usually represented in matrix form, with the dimen-
sion related to the space(-time) they live in. In continuum mechanics, e.g., a
second order stress tensor, represented as 3 × 3 matrix, holds inner force mag-
nitudes dependent on their directions. The related strain field follows the same
representation. In general relativity a second order spacetime curvature tensor
denotes a 4 × 4 matrix, capturing stretched and compressed distances – also de-
pendent on direction – induced by gravitation. A fourth order tensor is e.g. used as
a mapping between stress and strain tensors. Here, it represents material proper-
ties and is able to model non-homogenous behavior, as e.g. in wood. Note that the
encoded direction information in a second order tensor has, per-se, no orientation.

1Equation (3.5) demonstrates an example with dimension n = 3 and order m = 2.

23

24 CHAPTER 3. CURVED LINE RECONSTRUCTION

In the stress tensor a negative magnitude usually stands for pressure and a positive
one for tension. But pressure (and tension) is not pointing in a specific direction,
there is rather only an axis of the effect. The flux of force can be interpreted as
bidirectional connection of points sharing the same type of stress (e.g. principal
stresses).

Within this thesis, a key idea is to use a second order tensor to encode local ori-
entations and magnitudes (distances) of point neighbors within point sets; inspired
by prior work on the visualization of spacetime curvature tensor fields. Here, the
tensor field is embedded into a global ’standard’ 3D Euclidean space. A neighbor-
hood tensor can, thus, be computed at any arbitrary location without the need
for local coordinates or spacetime dependent coordinate transformations. Refer to
e.g. Pahl and Damrath (2000) or Benger (2004) for an in-depth introduction of
tensor properties and tensor analysis.

The neighborhood tensor in point clouds is computed as follows: from a point of
reference, vectors pointing towards ’close’ neighbors are uplifted to a higher tensor
order (first to second order), summed up, and normalized. The dyadic product is
used to uplift the tensor order, formally expressed as:

vi = pi − c (3.2)
di = |vi|/r (3.3)

˜
t =

1∑N
i=1 ωT (di)

N∑

i=1

ωT (di)(vi ⊗ vi), (3.4)

with c the point of reference (centroid), pi the points of a neighborhood of size
N and radius r, vi the vectors to the neighbors, di the respective distances to
the neighbors, ⊗ the dyadic (or tensor) product, and ωT (x) a weighting function
(R→ R). The function allows to weight closer neighbors to contribute more into
the tensor sum and, thus, the tensor’s properties. Figure 3.1 further illustrates the
process.

The magnitude of the neighborhood tensor with respect to a certain direction
can be computed by the product:

` = dT

˜
t d, (3.5)

with ` ∈ R a scalar value, d ∈ R3 a normalized direction vector and
˜
t the neigh-

borhood tensor. Thus,
˜
t provides the mapping:

˜
t : R3 × R3 → R. (3.6)

The neighborhood tensor is symmetric by construction and holds six distinct val-
ues. Thus, the tensor is positive definite and ` will always be equal or greater than
zero,

3.1. PRELIMINARIES 25

Figure 3.1: From a point set, a subset is selected (left). Then, direction vectors to
the selected neighbors are computed, and possibly weighted by distance. Direction
vectors are converted into second order tensors and summed up to one tensor
(right); the point distribution tensor (or co-variance) is illustrated as an ellipsoid.

Note that the derived matrix is a co-variance matrix and its eigenanalysis
denotes the principal component analysis, which is frequently used to reduce di-
mensionality of data, see e.g. Pourahmadi (2013). The formulation via tensors can
be considered as a generalization, permitting application of tensor field algorithms:
e.g. geodesics or tensor field visualization techniques.

3.1.2 Vector Field Integration

For the reconstruction of points being distributed in a line like formation, the
method of streamline integration is employed. A streamline ’follows’ vectors in a
vectors field; i.e. the line’s tangent is controlled by a vector field:

d

ds
q(s) = V(q(s)), (3.7)

with q a mapping from the curve parameter s ∈ R to a point on the manifold M
in R3, and V a vector field providing a tangential vector v ∈ R3 at each point on
M . Throughout this thesis we focus on the Euclidean 3D space (R3); for a more
general and precise introduction to metric spaces, tangential spaces, and integral
curves, see e.g. Ritter (2011).

Generally, a streamline can be found by solving an initial value problem. Here,
explicit numerical integration is employed on the major eigenvectors of the second
order neighborhood tensor field, as illustrated in Figure 3.2 (Left). From a starting
position and direction, a line is traced along the eigenvector field. An initial start-
ing direction is required since the bidirectional eigenvectors provide no orientation.
During integration, eigenvectors may have to be ’flipped’ to be aligned with the
starting (or current integration) direction.

26 CHAPTER 3. CURVED LINE RECONSTRUCTION

q(s)

Figure 3.2: (Left:) An eigenvector streamline follows the vector field from a start-
ing position. Opposing vectors are flipped during integration. A distance weighting
function ωI is employed to interpolate in-between the point based data. (Right:)
An additional direction defined by angular weighting with respect to the current
integration direction was employed as an extension in the line reconstruction.

In this thesis, the symplectic Euler, as well as several explicit Runge-Kutta
(RK) schemes have been utilized for numerical integration: RK32, RK38, RK4,
Fehlberg45, Merson45, Dormand-Prince5, and Dormand-Prince853 (Dormand and
Prince, 1980; Hairer et al., 1993). With the exception of the latter, these methods
were implemented as numerical solvers employing butcher tables for configuration.
Concerning the RK methods, the first number in each name denotes the main order
(e.g. RK32 is of order 3 and Fehlberg45 of order 4). A second number usually
denotes the order of internal error estimation and step size control. In Ritter
and Benger (2012)*, the reconstruction results could be further improved with the
highly precise 8th order DOP853 method. However, in the end the simpler and
faster RK32 was finally chosen as the standard for our integration. Since the second
order tensors are computed at given discrete points of a point set, interpolated
values need to be provided for the streamline integration. Also in this process
a weighting function ωI is utilized, to interpolate the eigenvectors close to the
current streamline position (indicated by the stippled circle in Figure 3.2 (Left)).
Next, as an extension in our streamline integration, we also propose to employ the
angles between the current integration direction and close neighbors, for finding
the next direction. This idea is hinted at in Figure 3.2 (Right); see Ritter et
al. (2021a)∼ below for further details and the precise definition of the vector
field. Also here, another weighting function ωA is employed to weight normalized
directions. Due to this, and the other weightings above, the selection and analysis
of weighting functions has been a focus in the work of this thesis.

3.1. PRELIMINARIES 27

3.1.3 Weighting Functions

A number of weighting functions have been tested for Equation 3.4. Twenty-eight
kernel style functions were selected: ranging from linear ramps, over polynomials
up to order five, to exponential and sine based variants. In addition, parameter-free
kernels originating from smooth particle hydrodynamics (Monaghan, 2005), com-
pactly supported radial basis functions (Wendland, 1995; Skala, 2012), and anima-
tion easing functions (Penner, 2020) were employed and tested. Figure 3.3 (Left)
illustrates a subset.

Figure 3.3: (Left:) Subset (7 of 28) of weighting functions employed as ω(x) in
Equation 3.4, as well as for data interpolation. A simplified version of the Fermi-
Dirac function showed best performance (see Equation 3.8). The shape can be
optimized via two parameters. (Center:) Variation of m, (Right:) Variation of T .

As another kernel option, the Fermi-Dirac function was investigated. It orig-
inates from quantum statistic, see e.g. Reif (1965), with parameters m and T :

ωfermi(x) =
1

e(x−m)/T + 1
. (3.8)

Note that any physical constants having been removed, since the function is
only used as a normalized weighting kernel. The parameter m shifts the function
along the abscissa and T blends the shape smoothly from a step function to a
linear function (see Figure 3.3). This allowed to optimize the weighting function’s
shape by selecting its parameters, according to error measures in a quantitative
evaluation.

A preliminary evaluation on a subset of seven weighting functions has been car-
ried out in Ritter and Benger (2012)*. Later, a test bed for automated parameter
variation was set up and the full set of functions employed. Testing was performed
on an artificial setup on the reconstruction of a circle and a rectangle; the final
reconstruction error was measured, and optimized through varying the parameters
(see Ritter et al. (2021a)∼ and Section 3.3.5 below). Based on this analysis, in
the final line reconstruction setup two Fermi-Dirac functions were employed: I)
(m = 0.6, T = 0.1) and II) (m = 0.05, T = 0.35); I) for ωT in Equation 3.4 and
II) for interpolation (ωI and ωA). Besides better error measures, the Fermi-Dirac

28 CHAPTER 3. CURVED LINE RECONSTRUCTION

function also showed better results in the visualization of multi scale shape factors.
A comprehensive list of all weighting functions and their equations is provided in
Appendix A.4. Next to the weighting functions, also the selection of centroids for
the tensor computation was examined.

3.1.4 Neighborhood Centroids

Different strategies were tested for selecting the point of reference c in the tensor
computation in Equation 3.4. One option is to directly employ the points of
the point set itself. In that case we proposed to denote the tensor as the point
distribution tensor (PDT). Other common choices are: mean c, weighted mean cω,
geometric median cL1, and weighted geometric median cL1ω (see also Figure 3.4).
The centroids are formally obtained as:

c =
1

N

N∑

i=1

pi (3.9)

cω =
1∑N

i=1 ωC(|pi − p1|/r)

N∑

i=1

ωC(|pi − p1|/r) pi (3.10)

cL1 = argmin
x

N∑

i=1

|pi − x| (3.11)

cL1ω = argmin
x

N∑

i=1

ωC(|pi − x|/r) |pi − x|, (3.12)

with pi the points in a neighborhood of size N around a point p1, r the neighbor-
hood radius, ωC a normalized radial weighting function, and x an arbitrary point
within the neighborhood radius. The first point p1 of the set pi is used as center
in a radial range query.

The mean centroid c is employed in the standard principal component analysis
(PCA). The geometric median is a point within a (neighborhood) point set, where
the distances to all other points are minimal. It is also known as L1 median,
and has been found to be a robust global center of point sets (see e.g. Huang
et al. (2013)). We compute cL1 with an iterative algorithm originally proposed by
Weiszfeld (1937), in an implementation following Burt et al. (2009). Note that
according to Beck and Sabach (2015), the original Weiszfeld algorithm was later
also rediscovered by Kuhn and Kuenne (1962).

In the examined reconstruction of real-world point clouds generated with Li-
DAR, the weighted variants of the mean and median showed better behavior.
The weighted mean stood out in automated abstract parameter runs (see Ritter

3.1. PRELIMINARIES 29

(a) Neighborhood (b) PDT (c) Mean (d) Median

Figure 3.4: Different points of reference for the neighborhood analyzes were em-
ployed: a point itself (b), the mean (c), and the geometric median (d). The
geometric median is defined as the point that minimizes the sum of all distances
(indicated by the lines). The weighted variants are usually located in between the
mean and the median (see Section 3.3.6).

et al. (2021a)∼ for more detail). For visual exploration, the classical geomet-
ric median provided smoother and better defined multi scale images of geometric
measures (see Sections 3.1.5 and 3.3.6 below, as well as Ritter et al. (2021b)∼).

3.1.5 Multi Scale Geometric Measures

To select ’good’ neighborhood sizes, especially with respect to a line reconstruction,
geometric measures of the neighborhood tensor were computed, as shape factors
according to Westin et al. (1997). They describe the shape of a tensor ellipsoid
with three values:

CS = 3λ1/L,

CP = 2(λ2 − λ1)/L (3.13)
CL = (λ3 − λ2)/L

L = λ1 + λ2 + λ3, (3.14)

with λi the eigenvalues of an eigenanalysis of
˜
t, λ1 ≤ λ2 ≤ λ3, and CL denoting

linearity, CP planarity, and CS sphericity. The three geometric measures form a
barycentric coordinate system and, thus, are suited for tensor visualization (see
Section 5.1.1). In Figure 3.5, three geometric shapes corresponding to a value of
1.0 for each of the three shape factors are illustrated, in a triangular arrangement.

High linearity in a tensor indicates that the points in the neighborhood are
located on a line. Respectively, a high planarity indicates that points are dis-
tributed on a plane and high sphericity that points are homogeneously located in

30 CHAPTER 3. CURVED LINE RECONSTRUCTION

CS = 1

CP = 1 CL = 1

Figure 3.5: The shape factors span a barycentric coordinate system and, thus,
can be arranged and interpolated over a triangle. The extreme cases – each single
shape factor being 1.0 – are then located at the corners of a triangle. There, the
other shape factors are 0.0, respectively.

3D space. However, for sampled points of a line, when curvature become high,
e.g. at a corner of a planar rectangle, the shape factor at the corner is also dom-
inated by planarity. The same happens at line crossings. Analogously, sphericity
becomes non vanishing along an edge of a (point sampled) 3D cube. Inspecting
the tensors of nearby points could help to decide in such cases. Clearly, the shape
factors depend on the chosen radius.

To enrich the neighborhood information the tensor and its shape factors are
computed over multiple scales, i.e. the geometric measures become functions of the
neighborhood radius r: CS(r), CP (r), and CL(r). Figure 3.6 illustrates an example
of the multi scale measures. The point of reference is located on a point sampled
rectangle close to the corner (left). The radius dependent measures (center) show
that for small radii the linearity is dominant. As soon as the radius grows over the
corner the planarity fraction increases and, respectively, linearity decreases. The

Figure 3.6: (Left:) Tensor computation with increasing radius illustrated in a point
set with (white dots) and without noise (black dots). (Center:) shape factors as
function over the radius r. At a small radius linearity is dominant. As the radius
grows over the corner it decreases and planarity increases. (Right:) Shape graphs
for the noisy point set.

3.1. PRELIMINARIES 31

graph on the right depicts the same scenario but with the sampled point locations
being distorted by noise (light grey circles, left). Note the peak at the small radius
scale, here linearity is high as only two points are within the radius. Then linearity
quickly decreases to a local minimum and increases again, to a strong maximum.
Here, the small local minimum directly visualizes the magnitude of the added
noise. The strong maximum marks a radius, where the major eigenvector will be
a feasible direction of local linear structure.

The multi scale geometric measures were explored and employed in several
aspects within the thesis:

1. They were used for the evaluation of tensor computation parameters. They
revealed the influence of the weighting functions: overall scale of the (local)
minima and maxima as well as graph smoothness. Further, they were em-
ployed to show properties of the different centroids. This became especially
apparent when the three graphs were mapped by a color map and used to
illustrate spatially neighboring graphs. Ritter et al. (2021b)∼ introduces
these multi scale geometric measures and presents the measure for different
weighting functions.

2. The multi scale measure graphs were utilized in the geometric reconstruction
to identify ’good’ candidate locations to start the eigenvector streamline
integration. A scoring function is introduced, where a main component is an
integral approximation of the linearity graph.

3. Further, linearity graphs were analyzed with respect to their local maxima
to find radii of the tensor where the major eigenvector is a plausible direction
to reconstruct a line. Therefore, a second scoring function is introduced.

4. Similar to the observation related to the noise amplitude in Figure 3.6, a
noise rate estimator was developed operating on the multi scale measure
graphs, analyzing the graphs with respect to local and global maxima and
minima.

Ritter et al. (2021a)∼ introduces the last three aspects in detail. The extension
Section 3.3.4 shows more multi scale graphs dependent on employed weighting
functions than presented in Ritter et al. (2021b)∼.

3.1.6 Reconstruction and Visualization

Reconstruction: The proposed line reconstruction starts with a geometric analy-
sis employing the multi scale measures as a pre-process on the point cloud. Therein,
optimal linear directions and neighborhood radii are selected. Next, good candi-
dates to start line integration are selected, also based on the multi scale measures,
but adding a distance term. For each selection procedures a score function was

32 CHAPTER 3. CURVED LINE RECONSTRUCTION

designed. From multiple start points lines are integrated employing the RK32
scheme in parallel, forwards and backwards. Such line lets are merged and inter-
sected as they are evolving. Different stop criteria have been developed to end
line integration. A final pruning step deletes orphaned lines; yielding a final line
reconstruction.

Error measures with respect to ground truth data were developed to evaluate
the technique. A Hausdorff and mean distance metric, and criteria to decide
on the completeness of a reconstruction were introduced. A set of artificial test
cases was created in 2D and 3D; capturing important features of sampled lines:
varying curvature, sharp corners, and crossings. Additionally, noise was added in
a controlled way by adding: jitter, uniform speckle, distribution noise, and data
holes. The error measures are evaluated on parameter runs, and in comparisons
to recently introduced line reconstruction methods. Finally, a real world data set
serves as a practical feasibility study, by automated detection and reconstruction
of cables in a LiDAR scan. Ritter et al. (2021a)∼ describes the reconstruction
process in detail, below.

Visualization: Ritter et al. (2021b)∼ delves into the visual exploration of
point clouds employing the multi scale geometric measures. Visualizations thereof
are used to explain optimization choices on the finally utilized weighting functions,
centroids, and the exponentially growing radius scale. A color map and the overall
visualization method by using multi-scale measure images on line-probes is intro-
duced and demonstrated on small artificial test cases and, finally, on a LiDAR
data set.

Robust Reconstruction of Curved Line Structures in Noisy Point Clouds

Marcel Ritter∗a,b, Daniel Schiffnerc, Matthias Hardersa

aInteractive Graphics and Simulation Group, Department of Computer Science, University of Innsbruck, Austria
bAirborne Hydromapping GmbH, Innsbruck, Austria

cDIPF | Leibniz Institute for Research and Information Education, Frankfurt, Germany.

Abstract

Point-based geometry representations have become widely used in numerous contexts, ranging from particle-based sim-
ulations, over stereo image matching, to depth sensing via light detection and ranging. Our application focus is on the
reconstruction of curved line structures in noisy 3D point cloud data. Respective algorithms operating on such point
clouds often rely on the notion of a local neighborhood. Regarding the latter, our approach employs multi-scale neighbor-
hoods, for which weighted covariance measures of local points are determined. Curved line structures are reconstructed
via vector field tracing, using a bidirectional piecewise streamline integration. We also introduce an automatic selection
of optimal starting points via multi-scale geometric measures. The pipeline development and choice of parameters was
driven by an extensive, automated initial analysis process on over a million prototype test cases. The behavior of our
approach is controlled by several parameters – the majority being set automatically, leaving only three to be controlled
by a user. In an extensive, automated final evaluation, we cover over one hundred thousand parameter sets, including
3D test geometries with varying curvature, sharp corners, intersections, data holes, and systematically applied varying
types of noise. Further, we analyzed different choices for the point of reference in the co-variance computation; using a
weighted mean performed best in most cases. In addition, we compared our method to current, publicly available line
reconstruction frameworks. Up to thirty times faster execution times were achieved in some cases, at comparable error
measures. Finally, we also demonstrate an exemplary application on a real-world 3D light detection and ranging dataset,
extracting power-line cables.

Keywords: Computational geometry, noisy point clouds, line reconstruction, automatic, adaptive control

1. Introduction

Datasets based on points as geometric primitives have
become very popular in recent years. Noisy point cloud
data are, for example, obtained from different capturing
devices, such as depth cameras, during stereo matching, or5

in light detection and ranging (LiDAR) scanners (e.g. [1,
2]). Moreover, such data are also common in particle-
based simulations (e.g. [3]). In this context, we currently
focus on the automatic reconstruction of curved line struc-
tures from noisy 2D/3D point cloud data. To this end, we10

investigated the development of geometric measures for
analyzing such data, as well as the automatic choice of
optimal local point neighborhoods for further processing.

Our application area is the reconstruction of airborne
scans. In these, data come with high noise, uncertainty,15

geometric diversity, as well as also at high volumes. As
stated in [4], the reconstruction of airborne scans has re-
ceived lesser attention than that of small-sized objects.
Related work often focuses on small and well-defined ob-
jects, for which normal vectors may even be known (see20

∗Corresponding author
Email addresses: marcel.ritter@uibk.ac.at

(Marcel Ritter∗), Schiffner@dipf.de (Daniel Schiffner),
matthias.harders@uibk.ac.at (Matthias Harders)

e.g. [5]). This notion is also supported in the review in [6],
where the authors point out the lack of a comprehensive
evaluation specific for different sub-classes of reconstruc-
tion algorithms.

In our framework curved line structures are extracted25

based on a mesh-free streamline reconstruction strategy
(e.g. [7]). Starting from automatically determined ini-
tial seed positions, important and dominant directions are
identified in point cloud neighborhoods. The latter are
based on weighted second order tensors of local point co-30

variance. Size variations in the geometric features are cap-
tured through analysis over multiple scales. Based on the
determined geometric measures, we automatically set al-
gorithm parameters: the selection of starting points and
integration directions, the radii of the directional search35

neighborhoods, as well as the direction evaluation. A large
set of varying 2D and 3D geometries serves as a test-bed for
automatic analysis, including different types of noise and
data holes. Reconstruction errors are quantified with met-
rics that compare to the original undistorted point cloud40

geometry. Our heuristic framework is capable of robustly
reconstructing 3D curved lines from distorted point sets;
with the following main contributions:

• Analysis of geometric measures in point clouds to

Preprint submitted to Journal of Visual Informatics January 28, 2021

automatically set neighborhood radii.45

• Scoring functions to automatically select integration
start points and optimized integration radii.

• Use of a hybrid vector field, for reconstruction via
streamline integration.

• Noise rate estimation via geometric measures.50

• New error measures for line reconstruction evalua-
tion.

• Extensive automated analysis of parameter choices,
such as covariance centroids and weighting factors.

After presenting the related work, we first provide an55

overview of the complete reconstruction pipeline in Sec-
tion 3. Thereafter, we introduce the key elements of the
framework in Section 4. First, the distance-weighted geo-
metric measures are addressed; next, we present the hybrid
vector field employed for streamline integration, based on60

Eigenvectors and angular-weighted directions; and finally,
the use of multiple line-lets for streamline integration is in-
troduced. In Section 5 we focus on the automation of the
method: detecting good start point candidates and iden-
tifying optimal radii for Eigenvector pre-computation. Fi-65

nally, performance evaluation and curved line reconstruc-
tion results are presented in Section 6. We introduce ad-
equate error metrics, compare to recently proposed alter-
native techniques, and indicate the real-world application.
In the next section we will cover prior research results,70

separated into several associated domains.

2. Related Work

Line Reconstruction in Points Clouds: In [8] an
algorithm based on a Voronoi diagram of the point cloud
was introduced; nearest neighbors were connected using an75

angle-to-Voronoi edge ratio and a topological condition.
They were able to connect irregular point samples with
sharp corners; however, existing points were connected di-
rectly, which is not appropriate for the noisy and densely
sampled geometry targeted in our work. A Voronoi-based80

approach was also followed in [9], augmented with a hu-
man vision inspired criterion, directly connecting points.
They also provide an overview of curve reconstruction al-
gorithms, such as CRUST, or NN; and outperformed these
with their DISCUR algorithm. They successfully per-85

formed line reconstructions of small point sets, includ-
ing sharp corners, boundaries, and multiple components.
However, they could not handle large and very noisy data,
interpolation between samples, or 3D reconstructions. A
method based on a uniform grid was developed in [10].90

A sequence of fitting rectangles was computed containing
points of the cloud. The center points of the rectangles
were then connected and used along with border intersec-
tions to control a B-spline as curve approximation. While
the method could handle jittered data, it was not robust95

against speckle noise; also, branches or sharp corners were
not supported. Other works focused on fitting polynomi-
als to noisy point clouds. In [11] a noise-adaptive smooth-
ing term was added to the curve fitting; they employed
a principal component analysis (PCA) in a pre-processing100

step for segmentation, and constructed piecewise curves,
supporting branches and crossings. While our approach
follows a different direction, similarities exist in the use
of a weighted PCA, as well as the piecewise reconstruc-
tion strategy. Nevertheless, they only provided examples105

for 2D; and the method was hampered by outliers and
data holes. Fitted B-splines were employed in [12], where
the authors extended line and surface reconstructions to
avoid user-defined regions. Nevertheless, for 3D they fo-
cused on surfaces, not on lines; and branches or crossings110

were not targeted in their work. A line reconstruction
algorithm based on half disks and an angle-weighted prob-
ability function was suggested in [13]. From a start point,
additional ones were selected and concatenated into a line.
The method could handle line crossings; further, when115

noise was introduced, lines could still be reconstructed.
However, the result would always be located at the outer-
most border of a curved point cloud. In our approach we
also employ an angle-weighted directional component. In
[14] lines were reconstructed via a PCA, using an adaptive120

radius selection. They employed a normalized maximal
Eigenvalue to decide on an optimal radius, and then gen-
erated 3rd order polynomials to reconstruct a line. Albeit,
their method was limited to smooth lines and could not
handle crossings, branches, or data holes. They extended125

their work in [15] by applying a minimal Euclidean span-
ning tree for point thinning. This enabled robust support
for branches and crossings, but also introduced gaps at
the intersections. In a different context, transmission lines
were reconstructed in [16], via segmentation and piecewise130

regression. They focused on an automatic, robust, and
precise method dealing with noise induced by wind; they
compared to and outperformed the Hough Transform.

Most recent publications on 2D line reconstructions of
point clouds can be found in [17], [18], and [19]. First the135

CRUST and NN approaches were extended, focusing on
very sparsely sampled data. They select a local nearest
neighbor and the opposite half-space neighbor, and prove
that this permits connecting up to 60◦ sharp corners with
a larger ε-sampling than previous methods. The authors140

further extended their introduced HNN-CRUST algorithm
to FitConnect, by first estimating a local feature size and
generating new points via blending in noisy regions. An
extensive analysis on many examples is provided and com-
pared to other work on line reconstruction. They were able145

to successfully deal with sharp corners and varying noise.
A further extension improves line smoothness. However,
their focus was on 2D-manifolds; T-junctions, crossings,
and 3D reconstructions were not covered.
Surface Reconstruction in Point Clouds: In the early150

1990s, tangent planes computed via covariance analysis to
define implicit surface functions were introduced in [20].

2

Using these, they reconstructed surfaces with the March-
ing Cubes iso-surface algorithm. However, the covariance
was not weighted and, thus, more prone to noise. In155

[21], several methods for local surface and normal esti-
mations were compared. They analyzed the estimation
performance on artificial geometries and added growing
noise. They focused on quadratic fitting and mentioned
a covariance-based technique, but did not include it in160

their comparison. A benchmark for surface reconstruction
algorithms was provided in [6], comparing ten state-of-
the-art approaches for point clouds with defined normals;
among them: compactly supported radial basis functions
(CSRBF)[22, 23], simple point set surfaces (SPSS), im-165

plicit moving least squares (IMLS), multilevel partition of
unity (MPU). The results showed that there was no supe-
rior, general technique for surface reconstruction. Polyno-
mial basis functions for distance weighting, as introduced
e.g. for CSRBF in [23], were also included as weighting170

candidates in our work. In [24] they also aimed at the
reconstruction of point sets, automatically adjusting to lo-
cally varying sampling and noise properties. A noise adap-
tive distance function was employed and an implicit func-
tion was found as a zero iso-line (or surface). The method175

yielded robust results to outliers and jittered point sets,
but differed in that it required closed smooth shapes as
prerequisite.
Tensor and Covariance Techniques: An algorithm to
compute Gaussian and mean curvature on polygon meshes180

was presented in [25], where a tensor product of direction
vectors to neighboring vertices was introduced to estimate
a surface curvature. They constructed a curvature repre-
sented by a 2× 2 matrix in the local surface tangent plane.
The method is limited to meshes and not applicable to 3D185

point cloud data. In [26] a 2nd fundamental form and a
Gauss map estimation of surfaces was introduced, based
on covariance in a local neighborhood. They detected re-
gions in depth images and distinguished between planar,
parabolic, and curved segments. They indicated that their190

method was robust to noise, due to the use of covariances,
instead of the closed fundamental form. However, this only
holds for low noise ratios. A similar weighted product to
compute a covariance matrix in point cloud neighborhoods
was proposed in [27] to estimate normals. The method195

operates on a point cloud, but the points are known to
originate from a surface geometry, again, with low noise
in the data. In [28] a voting technique was applied to
make the normal vector estimation robust against noise.
They employed shape factors for coloring and as a confi-200

dence measure. In our work, the shape factors are defined
differently; our method achieves robustness by weighted
covariance.
Line Following in Tensor Fields: Lines extracted from
diffusion tensor fields have been used in the medical do-205

main to visualize features in magnetic resonance images.
Here, the connection between different regions of the brain
are of interest, illustrated by fiber tracking. Early ap-
proaches employed Eigenvector streamlines following the

major Eigenvector of the 2nd order tensor [29], or a vector210

tensor multiplication to compute the next step direction
[30]. Crossing fibers could attract streamline integration
to switch to a different fiber. Thus, extensions have been
proposed to favor the original direction, when at a crossing
[31]. We also investigate direction selection strategies, but215

operate on mesh-less data instead of the uniform grids in
diffusion tensor works.
Point Cloud Classification: In [32] shape factors of a
PCA of indoor 3D flash LiDAR images were analyzed by
a decision network for point classification. They parame-220

terized shape factors by the number of neighbors in rather
small neighborhoods. We use different shape factor defi-
nitions and parameterize by radius. Similarly, also in [33]
shape factors were employed as input to a random forest
classifier. They improved their true positives by 3% via225

relying on the geometric median in the data.

3. Reconstruction Pipeline Overview

Our framework for the extraction of curved line struc-
tures in noisy point cloud data is composed of several in-
dividual key steps (see also Figure 1):230

1. Geometric measures: Geometric measures are lo-
cally computed via weighted covariances, in multi-
scale neighborhoods of the point cloud data. An op-
timal neighborhood radius is determined in a point-
wise fashion, based on these local measures.235

2. Start points: Seed positions for the piecewise stream-
line integration are automatically selected based on
the previously computed measures.

3. Grow lines: From the start points line-lets are grown
in parallel, following streamlines in a hybrid vector240

field. They follow point samples, which are likely to
have been sampled from continuous line geometry.

4. Prune lines: The growing line-lets are tested for
crossings and corners, and extended to overcome data
holes. Finally, they are pruned, and then concate-245

nated into curved line structures as output.

geometric measurespoints in start points

grow linesprune lineslines out

A

Figure 1: Main processing steps of the reconstruction pipeline.

3

Figure 2: Geometric measures, computed at a centroid in small ex-
ample 2D point clouds, with and without noise (top). The geometric
measures (bottom) change with the radius; linearity is initially high
and decreases when a corner is reached.

not include representative geometric information. More-
over, if 3D jitter noise is present, with an amplitude larger
than the radius, the sphericity measure will be dominant,335

independent of other structures. Thus, it will be challeng-
ing, or even impossible, to find only a single radius that is
optimal in all cases; especially, when sampling resolution
changes; or linear features occur at different scales in the
point cloud.340

The change of the geometric measures dependent on
a selected radius is visualized in Figure 2; the three mea-
sures are computed for two exemplary 2D point clouds
(top), yielding graphs as functions of growing radii (bot-
tom). Note that for this 2D case the sphericity measure345

yields zero; while the sum of the measures is one. The cen-
troid (orange), for which the measures are computed, is lo-
cated on a part of a point-sampled rectangle corner (blue),
once without (left) and once with jitter noise (right). In
the former case, as soon as the radius includes at least two350

neighboring points the linearity graph reaches a maximum
of 1.0, and remains there until the growing radius covers
the corner (stippled, larger dark-orange circle). At this
point the linearity starts to decrease, while planarity in-
creases. In the latter, noisy case, an initial peak at small355

scale marks the radius, at which the two closest points are
covered, yielding high linearity. This measure decreases
down to the jitter noise amplitude; and then increases,
also until the corner is reached. Using different weighting
functions in Equation (1) results in changes in the linear-360

ity graph. Therefore, we also evaluated the fitness of the
weighting functions with regard to properties of the linear-
ity graph: the maxima/minima at small radii, the plateau
at large radii, and the overall smoothness of the result-
ing graph. Regarding the smoothness, the Fermi-Dirac (I)365

weighting showed a good behavior, especially, when em-
ploying the MD, WMD, and WMN centroids. Quadratic
weighting also performed well, but occasionally produced
discontinuity artifacts in the geometric measure graphs.

4.3. Vector Field Integration370

In order to reconstruct curved line structures in point
clouds, we employ vector field integration (see e.g. [7]).
This denotes streamlines evolving along a certain direc-
tion in the mesh-less data, following the original geome-
try. Integration steps are numerically calculated using an375

explicit Runge-Kutta method. We tested various variants
up to order five, but the influence of this was found to be
small; thus, for our experiments we rely on a simple and
fast third order RK32 scheme.

For the integration process, local direction vectors are380

required, which will be determined based on the previously
computed Eigenvectors (note that the latter are bidirec-
tional and may have to be flipped). We have analyzed dif-
ferent methods for computing directions; in the end two
were combined into a hybrid approach.385

Since we work with mesh-less data we have to either:
interpolate between directions computed at existing data
cloud points pi or to directly compute a direction at an
arbitrary position xj . The first approach for finding an
integration direction at a location xj computes an aver-
age of neighboring major Eigenvectors; weighted based on
normalized distances:

dE(xj) =
1

∑N
i=1 ω(di)

∑N
i=1 ω(di) e3,i, (4)

with major Eigenvectors e3,i ofN neighboring points, given
by the selected radius; and di the normalized distances.
The Eigenvectors are aligned according to the direction
used in the previous integration step dt−1; i.e. they are
flipped if they oppose the current streamline major direc-390

tion. For the weighting function ω(.) we employ the Fermi-
Dirac (II) function mentioned above, which led to slightly
improved results in the interpolation. This first approach
is useful for noisy data and larger scale features, providing
a very smooth and robust direction selection. Since the395

Eigenanalysis has already been performed, no additional
computation is required.

A second option for finding an integration direction is
to employ the (normalized) sum of angle-weighted local
difference vectors:

dA(xj) = nrm

(N∑

j=1

ω
(

1− cos(ϕj) + 1

2

)
vj,i

)
, (5)

dA(xj)

dt-1

Figure 3: Angle-weighted direction vectors; the previous integration
direction (gray) is used as reference. With it, cosines of angles are
employed, obtained via dot products with all neighbor directions (one
example shown in blue). The final direction (red) is the normalized
mean of the weighted vectors in the neighborhood.

5

with vj,i = xj − pi being difference vectors, between lo-
cation xj and N neighboring points pi, again for a given
radius. The cosine term is computed using the angles ϕi400

between the normalized vectors dt−1 and vj,i (see also Fig-
ure 3); finally, ω(.) again is the Fermi-Dirac (II) weighting
function, this time evaluated with the angle-based term.
Directions computed with the second method stay closer
to the geometry, and overall reconstruction performance405

is better for smaller-scale features. As this method in-
cludes angle computations at the current streamline in-
tegration position it must be executed at “run-time” for
each integration step. Later, we will obtain the final in-
tegration direction as a weighted average of dE and dA410

(see Section 5.2). For this, optimal weights and radii will
be automatically determined based on the pre-computed
geometric measures.

4.4. Piecewise Reconstruction

As an improvement of the previously outlined vector415

field integration, we further propose to grow multiple, smal-
ler streamlines simultaneously, in breadth first fashion.
Starting from different points, integrations are evolved in
parallel, both in forward and backward direction, yielding
so-called line-lets. In each integration step the evolving420

line-lets are checked for various conditions (and possibly
terminated): i.e. exceeding a maximum step count, exit-
ing the bounding box of the point cloud, passing beyond a
maximum distance threshold, colliding with another line-
let end, or intersecting another line-let segment. In case425

of a collision, line endings are merged; in case of an inter-
section, line endings are placed at the intersection point.
In 3D, intersections of skew lines (i.e. segments) are deter-
mined by checking their closest points. Line segment end-
ings and closest skew line segment points are merged, when430

their distance falls below a distance threshold: ∆mrgh,
where h is the integration step size and ∆mrg a weighting
factor (set to 1.4). Furthermore, if during the integration
a line direction from one step to the next changes by more
than 70◦, a new line-let is seeded and a branch created.435

Endings at intersections, collisions, as well as branch seeds
are labeled as closed ; whereas line segment endings gen-
erated due to exceeding the bounding box or the distance
threshold are labeled as open.

In a final (pruning) step, points are deleted from all440

line-lets, starting from the open endings. The deletion pro-
cess propagates backwards until the distance to the clos-
est point in the point cloud is smaller than a user defined
threshold. A second user controlled parameter is the max-
imum integration distance. Increasing the latter enables445

to overcome data holes and decreasing the former allows to
delete long open branches. Finally, note that for efficient
intersection computations, the points of the line-lets are
also organized in a separate octree. In the next section,
the automation of the process will addressed.450

5. Process Automation

5.1. Selection of Start Points

A key element in our piecewise reconstruction is the
setting of start points for multiple line-let creation. We
propose to automate this according to the linearity graphs
introduced above. Points for starting the vector field in-
tegration should be located on “good” linear regions in a
point cloud. Thus, we analyze each linearity graph to de-
termine such locations. As outlined above, linearity mea-
sures are determined for different radii. First, in order to
accelerate the process, and to focus on features at different
scales, we propose to increase the search radii rk for this
computation according to an exponential function (instead
of a linear increase):

rk = ∆mdn 1.5k, (6)

where k can be considered as a discrete index to the set
of examined radii, proportional to log(r); the parameter
∆mdn denotes the (approximate) median minimum dis-455

tance between any two points in the point cloud (com-
puted either for the whole cloud or for a random subset).
Distances are computed for the N th-closest neighbors (we
employed N = 6). Based on these, the median for ∆mdn

is determined.460

log Radius log Radius

L
in

ea
ri

ty

1

2

3

4

5

6

CL,max

k

kL

*

Figure 4: Six linearity graphs on a rectangle at distinct locations.
The abscissas employ a log-scale for the radii. The approximated
integrals A, up to the last local minimum, as well as the maximum
CL,max are used for start point detection.

We found that the integral area underneath a specific
part of the linearity graph CL already represents a robust
feature for start point selection. To illustrate this Figure 4
shows graphs for six locations on an exemplary noisy point
cloud of a rectangle (note that the abscissas in the subplots465

employ a log scale for rk). Locations on a linear portion of
the cloud exhibit a larger integral (see 2, 4, 5). In contrast,
corner points (6) and points in noise (1, 3) typically show
a smaller integral and graph maxima. Thus, we propose to
estimate an approximate integral A of the linearity graph470

CL for points in the cloud. It is computed by summing up
linearity values for (exponentially growing) radii rk, from
zero to the last occurring local minimum in the graph;
numerically approximating the analytic integral (shaded
gray areas in plots). Note that from a certain maximal475

radius, linearity values will remain constant.

6

Point Index

L
in

ea
ri

ty
 I

nt
eg

ra
l

log Radius

L
in

ea
ri

ty

a

b

Figure 5: (Left:) Linearity integral sum values over (ordered) point
indices, determined for the two point clouds shown in Figure 6.
(Right:) Examples of linearity graphs for three selected points. Lo-
cations with a high sum (indicated by ellipses) are in linear regions
and considered as good start points for the streamline integration.

As a further illustration of the proposed feature, Fig-
ure 5 shows the linearity integral values computed at the
centroids of the open rectangles depicted in Figure 6. This
example was computed without (top) and with noise (bot-480

tom). As can be seen, the areas with large integral values
(marked by ellipses) remain relatively robust. Therefore,
large values of A may yield points in linear regions.

Based on the above, to obtain good start points we
employ a score function, which can be computed either for
all points or for a reduced random subset (initially with
distance parameter d set to 1.0):

Os = d ·N0.01
1

(
CL,max · A

)4
, (7)

where CL,max is the maximum linearity value in the ex-
amined interval of radii and N1 the number of neighbors485

in the first non-empty neighborhood encountered (when
growing the radius). Thus, orphaned points are slightly
down-voted. Further, in this specific case a small com-
putational improvement could be achieved by using the
PDT for computing CL,max, instead of using one of the490

other centroid computation approaches.
Employing the scoring function, we determine the high-

est-scoring initial point; setting d = 1. Next, using the
latter as a seed, we then progressively identify additional
start points, by evaluating the same (cached) equation,495

now with d being set to the shortest distance to all so far
selected start points. Note that candidates can be skipped
if a minimum number in N1 is not reached (by default 2
points). In very noisy data, employing a minimum number
of 6 points improved the results. The candidate in the500

current points with the highest score Os is then added to
the set of selected start points, and the process is repeated
with the remaining ones. The process stops if a maximum
number of starting points has been found.

Figure 6 illustrates identified start points on two ge-505

ometries, one without and one with jitter noise. The num-
bers in the plot indicate the order in which candidates were
selected according to the score Os. As can be seen, the first
start point is found in both cases at the center of a long
rectangle edge, while corner locations and noise points are510

avoided. For the initial point (1), distances to start point
candidates are shown by dotted lines. Larger distance is
favored. Therefore, start points remain at a reasonable

Osa

b

Nr of Points

Figure 6: Start points selected for two example geometries – with-
out and with noise. Points are chosen dependent on their score Os;
numbers indicate the order of selection. Linearity integrals at loca-
tions (a) and (b) are shown in Figure 5. On the right, the decreasing
scoring function for consecutive candidates is depicted.

distance from each other. The graph on the right shows
the decreasing score Os for a progressively increasing num-515

ber of selected start points. The score function is designed
multiplicative, since the scale of d cannot be normalized;
this still permits a relative sorting.

5.2. Radii and Weights for Integration Direction

As indicated above, the final streamline integration di-
rection for the current step dt will be determined as a
weighted average of vectors dE and dA:

dt = µ dE +
(
1− µ

)
dA, (8)

with µ being a blending weight. The computation of both520

direction vectors depends on the neighborhood radius, which
we also propose to determine automatically. Similar to the
automatic start point selection, the graph of the linearity
measure can be utilized for this.

After a single numerical integration step, the stream-525

line end position will usually not be located exactly at a
point of the point cloud. Therefore, we first find the point
pi closest to the current integration position xt, within a
search radius of rt = 1.25 · ∆mdn. At this point the pre-
computed linearity graph will be further examined. This530

permits finding an optimal neighborhood radius, for the
current step in the streamline integration process.

Large radii would be a good selection in point cloud
regions with noisy and coarse structures, while for regions
with fine structures small radii should be chosen. As an535

example for the former, consider the maximum in the lin-
earity graph for point 4 in Figure 4 (marked with a *); for
the latter, consider the (first) maximum in the graph at
location 6 in Figure 8. Thus, the analysis of the extrema
in the linearity graph will be a means for automatically540

selecting the neighborhood radius.
Linearity graphs will generally exhibit several local min-

ima and maxima at varying radii; typically, up to four
extrema were present in our examined geometries. Ac-
cordingly, we designed a second scoring function. It is
evaluated for each local maximum in the linearity graph,
at the corresponding radius (with index kj) for that spe-
cific maximum:

Om =
(

1− kj
K

)
CL,j +

Aj

A −
δ

2
. (9)

7

C ,jL

CL

k

jj-1 j+1

j

C ,j+LC ,j-L kj

Figure 7: Elements of scoring function, based on local maximum at
kj and neighboring minima at kj− and kj+ of the linearity graph.

Here, j denotes the radius index of the currently examined
local maximum, for the radius given by kj . CL,j denotes
the respective linearity value, and K the total number of
discrete radii indices considered for the current linearity545

graph. Further, A and Aj are again (numerically approxi-
mated) integrals of the graph. The former spans the same
interval of radii, as explained above; however, the latter
is only computed for an interval between the closest local
minima, to the left and to right of j (indicated by j− and550

j+, respectively). Finally, δ denotes the difference between
CL,j and the larger of the two linearity values at the neigh-
boring local minima, i.e. δ = CL,j − max(CL,j−, CL,j+).
For better illustration, the involved quantities are visual-
ized in Figure 7.555

The scoring function is comprised of three terms, which
can take values ranging from 0.0 to 1.0; higher being bet-
ter. Note that in the first term small radii are preferred
(i.e. small kj), since it is beneficial to adjust to small-scale
features if they are present. Additionally, larger linearity560

values CL,j generally also indicate good radii candidates.
In the second term, large local integrals Aj are favored,
which also hints at linear structures. Finally, peaky max-
ima will be voted down via δ in the third term. The score
Om will be computed for all local maxima, and the ra-565

dius associated with the highest score will be retained for
the computation of dE and dA. In order to illustrate this
step, Figure 8 depicts obtained radii and directions dE

for two example point clouds. Line segments are shown,
each with length given by the determined optimal radius570

and direction by vector dE . The radius, and thus length of
line segments, increases in regions of large linear structures
(1), in noise (2), and at low curvature (3); in contrast, it
is smaller at corners (4), crossings (5), and fine details (6).

We blend the two direction vectors via µ. When the
linearity and the integral at the chosen optimal local max-

1

3

4

5

6

2

log Radius

L
in

ea
ri

ty *

Figure 8: Optimal radii and directions dE shown via line segments
on two exemplary point cloud geometries.

imum j is large, then dE would be a stable choice; other-
wise dA should be prioritized to follow close-by geometry.
Thus, we propose to automatically set the blending pa-
rameter as:

µ =
1

2

Aj

A +
(
CL,j −

1

2

)
. (10)

Furthermore, to ensure that both methods for direction575

selection still influence the final outcome, we additionally
clamp this blending factor to the interval [0.05, 0.95].

Finally, the step size of the numerical streamline inte-
gration is also automatically set to h= 0.5 ∆mdn; note that
this ensures on average a neighborhood size of about six580

points. In order to improve computational efficiency, we
carry out in parallel the computation of geometric mea-
sures and Eigenvectors, as well as the radius selection.
The direction dE is determined at the current integra-
tion neighborhood and interpolated on the pre-computed585

Eigenvectors using the Fermi-Dirac (II) weighting. To com-
pute dA the previous integration direction and current
streamline position have to be known; thus, it is obtained
progressively.

5.3. User Control590

While our framework exhibits several parameters, we
propose to fix most of them. This is achieved either through
the outlined automatic selection processes, or through ex-
tensive prior automated parameter analysis runs. In our
current framework, a user has to manually control mainly595

three parameters:

• MaxIterations: The maximum number of streamline
integration steps.

• StartPointsNr: The number of start points for line-
let integration.600

• DistanceCutoff: The maximally allowed distance from
an integration point to the closest data point; used
to overcome holes.

All remaining parameters are pre-defined; albeit, a user
could adjust them still, if desired, for additional control.605

Examples are the pruning distance DistancePrune: the
maximally allowed distance from a line-end to a closest
point in the cloud, as well as MaxRadius: the maximum
geometric analysis radius (set to 60 ∆mdn). We provide
a user with an interactive visualization interface, for easy610

control and assessment of the reconstruction.

6. Analysis and Results

6.1. Point Cloud Test Geometries

For our analysis we employ six ”2D” and four 3D test
geometries: Circle, Rectangle, Triangle, Line, Wave, and615

Crossing; as well as Elbow, Helix, Mikado, and Crossing3D

8

y
x

z
y

x

Figure 9: (Top/Left): Six test “2D” geometries: Circle, Rectangle,
Triangle, Line, Wave, and Crossing. (Top/Right): Four 3D geome-
tries: Elbow, Mikado, Helix, and Crossing3D (depth indicated by
gray gradient). (Bottom): Added noise types; from left to right:
undistorted reference, jitter noise, distribution noise, outlier noise,
and hole(s).

(see Figure 9); these exhibit features such as varying cur-
vatures, sharp corners, and line crossings. All are sampled
as 3D point clouds (the “2D” geometries are displaced out
of the plane with a cosine function). Different types of620

noise were added to these geometries; we employ four cat-
egories, inspired by noise that may occur during real-world
data capture: unsteady trajectories and vibrations may
produce jitter noise; shadowing or multiple scans may in-
troduce density distribution noise; levitating particles or625

other small objects may produce random outliers; inten-
sity cut-offs in sensors or occlusions may lead to holes. Fig-
ure 9 also illustrates the effects of these on a line segment
(bottom). All effects are controllable in our framework by
appropriate parameters: jitter amplitude Sj , distribution630

blend Sd, data hole start ta and end te, and the number
of additional, random outliers M .

6.2. Noise Estimate

Below, we will test the reconstruction process on vari-
ous noisy example geometries. Note that only for our own,
artificially generated data these noise parameters will be
known exactly. In contrast, for arbitrary point clouds the
latter have to be estimated. We found that the mean of
all sphericity graph minima directly related to the noise
in the data. Therefore, we propose a metric quantifying
noise strength nR in arbitrary data:

nR = c · 1

N

∑N
i=1 min

r
CS,i(r), (11)

with CS,i(r) denoting sphericity of point with index i, at
multi-scale radius r. Further, a constant scaling factor635

c = 3.15 was included, normalizing nR for our test cases
to interval [0.0, 1.0]. Figure 10 illustrates the change of
this noise estimate, with respect to increasing 3D jitter
noise. Plots are shown for the ”2D” test cases of Rect-
angle and Circle. Moreover, also the change in minimum640

and maximum of the three shape measures is indicated.
At the bottom, a view of the rectangular point cloud with

avg min CL

nR

0

0.5

1

avg min CP

avg max CL

avg max CS
avg max CP

nR
avg min CS

0 1 2 3 SJ4 5

nR

Figure 10: Noise rate nR (orange), as well as averaged minimum and
maximum geometric measures per jitter noise – for linearity (grey),
planarity (blue), and sphericity (green) – for a rectangle (saturated
colors) and a circle (desaturated colors) point cloud. The averaged
minimum sphericity grows linearly at lower jitter values. Thus, it
was chosen as a noise rate measure and scaled for normalization, see
Equation (11).

increasing noise is provided. For both geometries, nR ini-
tially increases mostly linearly, later plateauing for higher,
more extreme noise.645

The noise rate nR is independent of distribution noise
and data holes. Below we will use this measure for evaluat-
ing and comparing results, dependent on noise magnitude.
As indicated, also real-world datasets, for which the noise
parameters are not known, could be compared in this way.650

6.3. Error Metrics

In order to evaluate the automatic reconstructions in
noisy point clouds, we require appropriate error metrics.
An option would be to adapt existing error measures, such
as in [40], to our case of curved line geometries. Nev-655

ertheless, we decided to develop metrics tailored to point-
sampled linear structures, comparing differences to a ground
truth in geometry, reconstruction length, as well as amount
of coverage.

First, geometric differences are quantified using an ada-
pted Hausdorff metric and an average minimal distance
metric. For comparison, we employ as ground truth equidis-
tant point samples Λ on the (known) test geometries. These
are compared to our reconstructions given by the stream-
line integration points Ω, obtained with constant step size.
For these we compute two errors – firstly, the point-based
Hausdorff metric:

EH = max
{

max
x∈Λ

min
y∈Ω

d(x, y),max
y∈Ω

min
x∈Λ

d(x, y)
}
, (12)

with d(., .) being the Euclidean distance between two points;
and secondly, an average minimal distance metric:

EV =
1

NΩ +NΛ

(∑
x∈Λ

min
y∈Ω

d(x, y) +
∑
y∈Ω

min
x∈Λ

d(x, y)

)
,

(13)

with NΩ and NΛ being the number of points in both com-660

pared sets. These two metrics indicate the local geometric
quality of a reconstruction.

9

nR: 0.72 nR: 0.75

(52, 0.7, 0.7) (34, 0.6, 0.8)

nR: 0.53 nR: 0.34

nR: 0.61

(52, 0.2, 0.8)

nR: 0.24

Figure 11: Automatic reconstructions (red lines) of six “2D” test
geometries, without and with noise (with nR specified). The number
of points is N = 174. Black dots are automatically set start points.
Noise cases are either generated with parameters M = 87, Sj =
1.0, Sd = 1.0, or according to values included inline via triplets.

As these two metrics remain stable even if only a part of
a point cloud is reconstructed, we developed two additional
measures, accounting for the reconstruction completeness.
The first is given as the ratio between the (estimated)
length of the reconstruction and the (known) length of
the original line:

ELen = len(Ω)
/

len(Λ), with (14)

len(Ω) =
NΩ−1∑
i=1

|xi+1 − xi|,

with xi being consecutive points of the reconstruction. If
the reconstructed line is shorter than the original one, then
ELen < 1.0; which we consider as incomplete coverage.665

Moreover, if ELen > 1.0, then the reconstruction may, in
some form, cover the original geometry several times (note
that it may still not be fully reconstructed).

The second completeness metric determines the amount
of coverage. For each line-let a corresponding arc-length
interval [s, e]l is computed, with s and e being the start
and end parameters (in arc-length) of Λ, and l the line-let
index. The union of all intervals divided by the length of
the original point cloud yields a completeness measure:

ECom =
1

len(Λ)

∑
|U|(ei − si), ei, si ∈ Ui (15)

U =
⋃
l∈L

[s, e]l.

ECom approaches 1.0 if the union of all arc-lengths covers
the full original geometry; if ECom < 1.0, then the re-670

construction is again incomplete. Using these additional
two metrics, a reconstruction is considered as unique, if
ELen ' ECom.

6.4. Initial Exemplary Reconstructions

In order to illustrate the performance of our complete675

reconstruction pipeline we first show a smaller set of qual-
itative results. Examples of the previously described test

nR: 0.67 nR: 0.55

nR: 0.57nR: 0.12 nR: 0.23

(52, 0.7, 1.0)

(0, 0.2, 0.8)(130, 0.5, 1.0)

Figure 12: Automatic reconstructions (red lines) of four 3D test ge-
ometries, with and without noise (with nR specified). Number of
points is N = 260. Black dots mark detected start points. Noise pa-
rameters are shown as triplets; for the elbow: M = 130, Sj=Sd=1.0.

geometries were reconstructed (see Figures 11 and 12),
both without as well as with varying degrees of noise. If
not explicitly indicated for a specific case, then jitter and680

distribution noise were both set to 1.0. Automatically de-
termined start points are shown as black circles. As can
be seen, the combination of start point selection and line-
let integration allowed for handling of sharp corners and
line crossings in these initial test examples. The adaptive685

selection of radius and integration direction made recon-
struction of noise-free as well as noisy point clouds possi-
ble.

For these example geometries we also examined the
previously mentioned error metrics. To this end, first 11690

noise seeds were randomly generated for each of them. The
noise parameters were not limited, possibly generating ex-
treme cases, which could not be reconstructed. Thus, the
maximum noise amplitudes were then lowered, until at
least five visually successful (according to an observer) re-695

constructions were obtained. Then, the error metrics were
computed per case, and averaged. The final results are
compiled in Table 1; both for noise-free (left number) and

Table 1: Average error measures for 3D reconstructions of ten exam-
ple cases, as in Figures 11 and 12. For each geometry, the numbers
for the noise-free (left) as well as the noisy (right) case are indicated
(separated by ’/’). Only reconstructions deemed as successful were
used for the error computation.

Geometry ELen EH EV Success Time
[%] [10−2] [10−2] [%] [ms]

Circle 100/99 4/68 2/27 100/91 8/17
Rectangle 98/96 14/108 2/36 100/82 8/17
Triangle 99/91 17/90 3/35 100/73 20/24
Crossing 103/105 10/95 3/26 100/73 6/14
Line 103/109 7/117 3/32 100/91 6/19
Wave 102/108 33/52 3/16 100/91 8/19
Elbow 99/100 18/109 4/35 100/91 13/27
Helix 101/106 12/110 4/26 100/82 11/26
Crossing3D 103/123 7/88 3/33 100/45 12/26
Mikado 104/108 4/39 2/10 100/45 14/13

10

Figure 13: Reconstructions (red) of incomplete data. The stippled
grey rectangles indicate the location of data holes in the original
point clouds.

noisy (right number) cases. Here, success indicates the
percentage of successful reconstructions, per test case, as700

assessed by an observer. As can be seen, when (stronger)
noise is present, the success rate reduces; for these exam-
ples on average to about 60%. Geometries with corners
exhibited higher errors εV . This is also due to smoothing
effects, introduced by the weighting functions and smooth-705

ing radii. Further, Crossing, Line, and Wave were quite
susceptible to outlier noise. The latter represented the
most difficult case, especially if jitter noise became too
high.

In a further test, we also qualitatively examined the710

robustness of the reconstruction to data holes. The lat-
ter have to be overcome by numerical integration across
empty regions. In this case, either another line-let may be
encountered or a user-specified length be exceeded. Fig-
ure 13 shows three qualitative examples on the circle and715

the rectangle geometry, again with and without noise. The
size of the holes (indicated by stippled rectangles in the
figure) is about 12% of the total line length.

6.5. Comprehensive Analysis of Reconstruction

6.5.1. Test dataset720

In order to perform a more quantitative and broad
performance evaluation, we obtained reconstructions with
our described approach in an extensive batch processing.
Overall, 4.45 million parameter runs were executed, each
representing a reconstruction attempt. Runs were grouped725

by five centroid types (see Section 4), and 6 configuration
sets. Each set with one centroid consisted of 127k runs.
All ten test geometries were sampled with 128, 256 or 512
points, and reconstructed with varying noise. The distri-
bution noise parameter Sd a well as the jitter parameter730

Sj were increased from 0.0 to 1.0; both with a step size
of 0.1. Similarly M , the number of outliers, was increased
from 0 to 0.4N , with a step of b0.1Nc. Finally, due to the
randomness in the noise generation, reconstructions were
repeated seven times with different noise seeds.735

6.5.2. Computational performance

The experiment was run on an Intel i7-9700 @ 3.60 GHz.
Computation times as well as error metrics were recorded
for each reconstruction. Over all parameter sets, the mean
computation time for obtaining the geometric measures740

was 32.8ms, while the integration took on average 7.8ms.
Figure 14 (left) provides box plots of the overall computa-
tion time for the reconstructions, per centroid type. Also,

569

0
50

100
150
200
250
300
350

R
un

 T
im

e
[m

s]

PDT MN WMN MDWMD

10.5 16.6 19.5

36.2 41.2

0

0.1

0.2

0.3

0.4

S
uc

ce
ss

 R
at

e
[%

]

PDT MN WMN WMD MD

Figure 14: (Left:) Computation time of the reconstruction (multi-
scale analysis and integration). (Right:) Averaged success-rates of
4.45 million parameter runs. Six configuration sets were tested with
five different centroid settings.

the median times are given as numbers. The point distri-
bution tensor is obviously the fastest, the geometric me-745

dian the slowest. However, note that the PDT is anyhow
used in all methods, as discussed in Section 5.1.

6.5.3. Success rate

Instead of relying on the judgement of an observer, we
now chose to automatically determine reconstruction suc-750

cess based on the previously introduced error measures.
We consider a reconstruction as successful, when ELen ∈
[0.9, 1.2], ECom ∈ [0.95, 1.05], and EV ≤ 0.25. Figure 14
(right) illustrates the collected success rates for the dif-
ferent centroids. On average, the weighted mean (WMN)755

yields a 19% higher rate than the PDT (0.374 vs. 0.315).
Note that in this study the success in general is lower, since
considerable noise is added to the runs.

Next, Figure 15 indicates the success rates, per geome-
try. However, here only the best performing configuration760

set (of six) per centroid was kept. WMN performs better
in almost all cases, with the exception of the Mikado geom-
etry. It especially handles cases well that include corners;
the employed quadratic inverse weighting function helps in
stabilizing the reconstructions. Due to this, we recommend765

using WMN for the centroid computation, for generic noisy
3D point clouds. Unless otherwise specified, it has been
employed in the majority of our presented cases.

Generally, Wave, Mikado, and Crossing3D are the most
challenging cases for our reconstruction approach. The770

curved nature of the wave makes it very sensitive to jit-
ter noise, usually failing when Sj ≥ 0.3. At similar jitter
amplitudes also the closely passing Mikado lines cannot
successfully be reconstructed anymore.

MD

Circle

Rectangle

Triangle
Line

Wave
Crossin

g
Helix

Elbow
Mikado

Crossin
g3D0

0.2

0.4

0.6

S
uc

ce
ss

R
at

e
[%

]

PDT
MN
WMN
WMD

Figure 15: Success-rates per geometry, for the best performing con-
figuration set of each centroid candidate. Overall, the weighted mean
(WMN) performs best, followed by the mean (MN).

11

0

0.2

0.4

0.6

0.4N

0.0
0.1N
0.2N
0.3N

M

Circle

Rectangle

Triangle
Line

Wave
Crossin

g
Helix

Elbow
Mikado

Crossin
g3D

S
uc

ce
ss

R
at

e
[-

]

0

0.2

0.4

0.6

[0.8, 1.0]

0.0
[0.1, 0.3[
[0.3, 0.5[
[0.5, 0.8[

Sd

S
uc

ce
ss

R
at

e
[-

]

0

0.2

0.4

0.6

0.8

1

[0.8, 1.0]

0.0
[0.1, 0.3[
[0.3, 0.5[
[0.5, 0.8[

Sj

S
uc

ce
ss

R
at

e
[-

]

Figure 16: Effect of increasing noise on success rates, per geometry;
using WMN and the best configuration set. Shown are jitter noise
amplitude Sj (top), outlier noise M (center), and distribution noise
Sd (bottom). Reconstruction performance is mostly independent of
outlier and distribution noise. For Sj ≥ 0.8 most reconstructions
fail. Wave and Mikado are highly sensitive to jitter noise.

6.5.4. Influence of noise775

Next, we examine the effect of noise type and parame-
ter setting on the reconstruction results. In Figure 16 suc-
cess rates are plotted, again separated by geometry. This
time, rates are shown for different noise values/intervals;
from top to bottom: jitter noise amplitude Sj , outlier noise780

M , and distribution noise Sd. Note that here, WMN was
employed for the centroid computation. Further note, that
a bar plotted for e.g. Sj = 0 includes the full ranges of the
other noise parameters, i.e. in this case M and Sd. As can
be seen, the success rate mainly depends on jitter noise.785

In contrast, changing distribution and outlier noise has a
smaller effect. Also, as already discussed above, the Wave
and Mikado represent the most difficult cases.

0

0.2

0.4

0.6

0.8

1

[0.8, 1.0]

[0.0, 0.02[
[0.1, 0.3[
[0.3, 0.5[
[0.5, 0.8[

nR

S
uc

ce
ss

R
at

e
[-

]

Circle

Rectangle

Triangle
Line

Wave
Crossin

g
Helix

Elbow
Mikado

Crossin
g3D

Figure 17: Success rates, plotted for varying noise rate intervals;
again separated per geometry. Using a single noise rate facilitates
overall comparisons of reconstruction success vs. noise, even for un-
known datasets. Moreover, also effects of algorithm variations can
be compactly visualized. Here, for instance, results are also shown
for the variation of enforcing a minimum of 6 candidate points in the
computation of Os; here visualized with stippled bars. This yields
improvements in the success rate, in presence of high noise.

6.5.5. Comparisons using new noise rate

Above we had introduced a new noise rate measure790

in Equation (11). It can be computed for arbitrary point
clouds to characterize overall noise, thus also making com-
parisons easier. Figure 17 depicts success rates, per geom-
etry, according to intervals of noise rate nR. As expected,
success rates drop when the noise rate increases. Again,795

the poor performance of the Wave example becomes appar-
ent. In addition, also possible variations of our approach
for special cases can be studied this way. As an example,
for high noise cases using 6 candidate points for computing
Os could be enforced, as discussed above. As can be seen800

via the stippled bars in the plot, this sometimes would
yield improvements.

6.6. Comparison to FitConnect/StretchDenoise

Next, we compared our approach to the recently pub-
lished reconstruction methods FitConnect [19] and Strech-805

Denoise [18]. Four challenging geometries introduced in
their work were also tested in our framework; point clouds
of a “monitor” outline, a spiral, a circle, and a “bunny”.
The examples include different geometric features, such as
corners, curved and straight sections, sparse geometry, as810

well as variable jitter noise. All geometries were tested
using the original geometries specified by the respective

Figure 18: Comparison of the reconstruction of three geometries of
[19] – using our approach (left), FitConnect (middle), and StrechDe-
noise (right).

12

authors. In addition, we also tested our geometry of a
crossing with FitConnect.

For the experiment we used the authors’ codes, which815

are publicly available online: [41] and [42]. Only minor
modifications were made, to ensure comparable computa-
tion time measurements, vector graphics plots of results
after computation, and loading of our crossing example.
Figure 18 compares the reconstructions of four test cases,820

for our approach, FitConnect, and StrechDenoise. Our
method yields smoother reconstructions; but corners may
be smoothed out, unless line-lets meet. The reconstruc-
tions with FitConnect follow occasionally a more zigzaggy
path, especially for lower noise rates. However, it can pro-825

duce sharper corners. Regarding the bunny, our approach
exhibited some artifacts: the small gap between the ears
was not reconstructed correctly; a merged line resulted.
Nevertheless, in contrast, the crossing lines example could
not be reconstructed with FitConnect or StrechDenoise.830

We compiled error measures and computation times
for these experiments, comparing all three approaches in
Table 2. Note that for this, the results from the FitCon-
nect and StrechDenoise framework and the ground truth
data were loaded into our framework to compute the er-835

ror measures. We found that our method was capable of
producing results of similar accuracy, while in most cases
being faster.

Table 2: Error measures and timings of five reconstructions, com-
paring with FitConnect (FitC.) [19] and StrechDenoise (StrD.) [18].
Our method can be several times faster; with similar results. The
best performing method is indicated in bold font.

Geometry Method EH EV ECom ELen Time
[10−2] [10−2] [10−2] [10−2] [ms]

monitor
Our 02 0.3 100 101 67
FitC. 02 0.2 100 106 2420
StrD. 02 0.2 100 103 2470

circle
Our 09 04 100 103 4
FitC. 11 03 100 102 10
StrD. 36 08 100 125 12

spiral
Our 36 08 100 108 5
FitC. 31 06 75 106 23
StrD. 20 07 80 99 34

bunny
Our 39 13 90 97 7
FitC. 71 12 100 124 4
StrD. 31 6 100 103 6

crossing
Our 46 02 100 103 9
FitC./StrD. – – – – >94

A further experiment was carried out, comparing Stretch-
Denoise and our method, when increasing the noise lev-840

els for a 2D circle. Figure 19 depicts six configurations
of increasing jitter and outlier noise. The parameters,
including the aggregated noise rates nR, are indicated.
StrechDenoise (bottom half) could handle jitter noise up
to Sj ≈ 0.4, with up to 30% additional outliers. Our ap-845

proach (top half) was capable of handling Sj ≈ 0.5, with
up to 100% additional outliers. Moreover, by enforcing a
6-point neighborhood for computing Os, this can be fur-
ther improved to Sj ≈ 1.0, with 150% outliers.

nR: 0.02 nR: 0.05 nR: 0.10

nR: 0.29 nR: 0.66 nR: 1.11

Sj: 0.1, M: 17 Sj: 0.2, M: 34 Sj: 0.3, M: 52

Sj: 0.5, M: 34 Sj: 0.5, M:174 Sj: 1.5, M: 161

Figure 19: Comparison of a noisy circle with different strengths of
noise: our approach (top half) and StrechDenoise (bottom half);
the same noise settings are employed for both methods (N = 174).
StretchDenoise exhibited difficulties with outlier noise, deteriorating
when e.g. 30% outliers are present (bottom half, row 1, right). In
contrast, our approach could handle jitter noise Sj = 0.5 and 100%
additional outliers (top half, row 2, middle). Further, even strong
noise with Sj = 1.0 and 150% can be handled, by enforcing 6 candi-
date points for Os (top half, row 2, right).

6.7. Application on Real-World LiDAR Data850

A smaller subset of 57k points of a massive LiDAR
dataset was selected to test our method on real-world data;
including houses, bushes, trees, and power lines. Fig-
ure 20 (left) illustrates the result, using the WMD and
exponential radius growth. The algorithm extracts the855

main cable geometries of the high-resolution scan. Note
also that coloring according to the median of the geomet-
ric features for each LiDAR point provides a good visual
classification (Figure 20 (right)). The maximum analysis
radius was chosen manually and set to 2.0, to capture all860

linearity scales. It was possible to extract the main lin-
ear structures from this larger, noisy real-world dataset.
Nevertheless, note that an artifact appeared on the roof
of the right house. Also, the integration continued onto
the roof and followed some of its edges. Stopping crite-865

ria were not adjusted to this specific dataset. The WMN
reconstructed the cable system successfully. Further, em-
ploying the WMD enhanced the reconstruction of the cable
bundle as well as it enabled to integrate better along the
roof surface edges: the gable and the border of the roof.870

13

Side:

Top:

log (r)

a

C
L
 C
P
 C
S b c

log (r)log (r)

a b c

I

I
c

b
a

Figure 20: Power line reconstruction of an urban LiDAR scan. (Left):
Two different views of the reconstruction. (Right); Computed geo-
metric measures at selected locations: (a) close to a tree with spheric-
ity becoming the second dominant shape value; (b) automatic start
point, with dominant linearity integral on an isolated linear struc-
ture; (c) roof location where planarity becomes more dominant. The
line (I) first follows a bundle of cables and then continues along a
pole onto the roof’s gable; i.e. a linearly directed structure of the
roof-surface. Here, the WMN was employed.

6.8. Discussion of Centroid Variants

As outlined above, different methods for computing the
centroids can be selected. This influences both the tensor
computation and the geometric features. The latter will
differ in scale and smoothness. Thus, the selection will875

influence the results of the score function and the vector
field. In general, WMN exhibited the best performance.
Still, in Table 3 we indicate the advantages and disadvan-
tages of the different options.

Table 3: Centroid performance by different aspects.

PDT MN WMN WMD MD

Computation time ++ + + – – –
Success rate – + ++ + –
Crossings – – + – –
Wave – – + + – –
Examples + + + + +
Extreme noise – – ++ + – –
LiDAR – – + + –

PDT clearly outperforms the others concerning com-880

putation time.WMN performs best in the overall success
rate, and it is beneficial for reconstructing crossings. Both
MN and WMN show the most success for the difficult Wave

case. Moreover, all approaches could handle the test cases
in [41, 42] (see above). For computing the maximum lin-885

earity CL,max in the starting point score Os, using the
PDT has the advantage that it down-votes noisy start-
ing points. In extreme noisy cases, as the circle above,
MN and WMN performed best. For our real-world LiDAR
datasets, WMN and WMD performed best in reconstruct-890

ing the cables.

7. Conclusion

We have presented a framework for the reconstruction
of curved line structures from noisy 3D point clouds. The
method implements a piecewise streamline integration, in895

a neighborhood tensor field. The approach employs weigh-
ing functions at several steps, e.g. tensor computation,
point cloud interpolation, and angular weighting. The
Fermi-Dirac weighting function gave good results and sta-
bilized against noise. Linearity graphs for different radii900

were examined to automatically set parameters and steer
the algorithm. This includes setting start points, detecting
optimal neighborhood radii, and finding directions for in-
tegration by using two new scoring functions based on the
geometric measures. Further, multiple line-lets are grown905

forward and backward in parallel; they intersect to form
the final global reconstruction. This permits to handle
non-manifold lines and sharp corners.

A thorough analysis was carried out on different test
geometries, with different types and amounts of noise. This910

highlighted the performance and the limits of the method
for each test geometry. With the automated parameter
runs, we explored different centroids for the tensor compu-
tation: e.g. mean or geometric median and weighted vari-
ants; opting for the weighted mean. Further, we compared915

our method to the recently introduced FitConnect and
StretchDenoise algorithms, with respect to error metrics
and computation time. Our reconstructions were smoother,
supported higher noise rates, and could handle crossings,
while usually being faster. However, in some test cases920

the geometry reconstruction was not fully successful. Fi-
nally, we tested our method on a real-world LiDAR scan
and were able to reconstruct five power cables. However,
artifacts were encountered, e.g. integration was continued
onto a roof following edges of its surface. In future work,925

we will investigate further the application to LiDAR cases;
especially, including linearity and sphericity into the stop-
ping criteria and/or the pruning step.

The executable of the tool and the source code for ge-
ometric measure computation and line reconstruction are930

provided online as well as the data and evaluation tools for
the parameter run benchmark [43]. A video demonstrat-
ing the method, selected test cases, and the LiDAR recon-
struction can be found here: https://marcel-ritter.

com/mssfreconstruct.935

14

References

[1] C. Toth, G. Jóźkòw, Remote sensing platforms and sensors: A
survey, ISPRS Journ. of Photogr. and R. Sens. 115 (2016) 22ff.

[2] S. Foix, G. Alenya, C. Torras, Lock-in time-of-flight cameras:
A survey, IEEE Sensors Jour. 11 (2011) 1917ff.940

[3] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, M. Teschner,
SPH Fluids in Computer Graphics, in: Eurographics 2014 -
State of the Art Reports, The Eurographics Assoc., 2014.

[4] R. Devore, G. Petrova, M. Hielsberg, L. Owens, B. Clack, Pro-
cessing terrain point cloud data, SIAM Journal of Imaging Sci-945

ences 6 (2013) 1–31.
[5] X. Lu, W. Chen, S. Schaefer, Robust mesh denoising via vertex

pre-filtering and l1-median normal filtering, Computer Aided
Geometric Design, Preprint (2017).

[6] M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, C. T. Silva,950

A benchmark for surface reconstruction, ACM Trans. Graph.
32 (2013) 20:1–20:17.

[7] J. Tao, J. Ma, C. Wang, C. Shene, A unified approach to stream-
line selection and viewpoint selection for 3d flow visualization,
IEEE TVCG 19 (2013) 393–406.955

[8] T. K. Dey, R. Wenger, Reconstructing curves with sharp cor-
ners, Computational Geometry 19 (2001) 89 – 99.

[9] Y. Zeng, T. A. Nguyen, B. Yan, S. Li, A distance-based param-
eter free algorithm for curve reconstruction, Computer-Aided
Design 40 (2008) 210 – 222.960

[10] H. Lin, W. Chen, G. Wang, Curve reconstruction based on an
interval b-spline curve, The Visual Comp. 21 (2005) 418ff.

[11] O. E. Ruiz., C. Corts., M. Aristizbal., D. A. Acosta., C. A.
Vanegas., Parametric curve reconstruction from point clouds
using minimization techniques, in: Proc of the Intern Conf965

on Comp Graph Theory and App and Intern Conf on Inf Vis
Theory and App - Volume 1: GRAPP, (VISIGRAPP 2013),
SciTePress, 2013, pp. 35–48.

[12] S. Flöry, Fitting curves and surfaces to point clouds in the
presence of obstacles, Comput. Aided Geom. Des. 26 (2009).970

[13] K. Philsu, K. Hyoungseok, Point ordering with natural dis-
tance based on brownian motion, Mathematical Problems in
Engineering (2010) 17.

[14] Z. Hasirci, M. Ozturk, An eigenvalue analysis based band-
width selection method for curve reconstruction from noisy975

point clouds, in: 34th International Conference on Telecom-
munications and Signal Processing (TSP), 2011, pp. 478–482.

[15] Z. Hasirci and M. Ozturk, A novel method for thinning branch-
ing noisy point clouds, in: 36th International Conference on
Telecommunications and Signal Processing (TSP), 2013, pp.980

713–716.
[16] Y. Jaw, G. Sohn, Wind adaptive modeling of transmission lines

using minimum description length, ISPRS Jour. of Photogr.
and Remote Sensing 125 (2017) 193 – 206.

[17] S. Ohrhallinger, S. A. Mitchell, M. Wimmer, Curve reconstruc-985

tion with many fewer samples, in: Proceedings of the Sympo-
sium on Geometry Processing, SGP ’16, Eurographics Associa-
tion, Goslar Germany, Germany, 2016, pp. 167–176.

[18] S. Ohrhallinger, M. Wimmer, Stretchdenoise: Parametric curve
reconstruction with guarantees by separating connectivity from990

residual uncertainty of samples, in: Proc of the 26th Pacific
Conf on Comp Graph and App: Short Papers, PG 18, Euro-
graphics Association, Goslar, DEU, 2018, p. 14.

[19] S. Ohrhallinger, M. Wimmer, Fitconnect: Connecting noisy 2d
samples by fitted neighborhoods, Computer Graphics Forum 38995

(2019) 126ff.
[20] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle,

Surface reconstruction from unorganized points, SIGGRAPH
Comput. Graph. 26 (1992) 71–78.

[21] A. M. McIvor, R. J. Valkenburg, A comparison of local surface1000

geometry estimation methods, Machine Vision and Applications
10 (1997) 17–26.

[22] Y. Ohtake, A. Belyaev, H.-P. Seidel, An integrating approach
to meshing scattered point data, in: Proceedings of the 2005
ACM Symposium on Solid and Physical Modeling, SPM ’05,1005

ACM, New York, NY, USA, 2005, pp. 61–69.

[23] H. Wendland, Scattered Data Approximation, Cambridge Uni-
versity Press, 2005.

[24] S. Giraudot, D. Cohen-Steiner, P. Alliez, Noise-adaptive shape
reconstruction from raw point sets, in: Proc. of the 11th Euro-1010

graphics/ACMSIGGRAPH Symposium on Geometry Process-
ing, SGP ’13, Eurographics Ass., Goslar, DEU, 2013, pp. 229–
238.

[25] G. Taubin, Estimating the tensor of curvature of a surface
from a polyhedral approximation, in: Proceedings of the Fifth1015

International Conference on Computer Vision, ICCV ’95, IEEE
Computer Society, Washington, DC, USA, 1995, pp. 902–.

[26] J. Berkmann, T. Caelli, Computation of surface geometry and
segmentation using covariance techniques, IEEE Transactions
on Pattern Analysis and Machine Intelligence 16 (1994) 1114–1020

1116.
[27] M. Alexa, A. Adamson, On Normals and Projection Opera-

tors for Surfaces Defined by Point Sets, in: M. Gross, H. Pfis-
ter, M. Alexa, S. Rusinkiewicz (Eds.), SPBG’04 Symposium on
Point - Based Graphics 2004, The Eurographics Association,1025

2004.
[28] M. Liu, F. Pomerleau, F. Colas, R. Siegwart, Normal estimation

for pointcloud using GPU based sparse tensor voting, in: IEEE
Intern. Conf. on Robotics and Biomimetics, 2012, pp. 91–96.

[29] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, A. Aldroubi, In1030

vivo fiber tractography using dt-mri data, Magnetic Resonance
in Medicine 44 (2000) 625–632.

[30] M.-C. Chou, M.-L. Wu, C.-Y. Chen, C.-Y. Wang, T.-Y. Huang,
Y.-J. Liu, C.-J. Juan, H.-W. Chung, Tensor deflection (tend)
tractography with adaptive subvoxel stepping, Journal of Mag-1035

netic Resonance Imaging 24 (2006) 451–458.
[31] D. Weinstein, G. Kindlmann, E. Lundberg, Tensorlines:

Advection-diffusion based propagation through diffusion tensor
fields, in: Proceedings of the Conference on Visualization ’99:
Celebrating Ten Years, VIS ’99, IEEE Computer Society Press,1040

Los Alamitos, CA, USA, 1999, pp. 249–253.
[32] D. J. Natale, M. S. Baran, R. L. Tutwiler, Point cloud process-

ing strategies for noise filtering, structural segmentation, and
meshing of ground-based 3d flash lidar images, in: 2010 IEEE
39th Applied Imagery Pattern Recogn. Worksh. (AIPR), 2010,1045

pp. 1–8.
[33] M. Weinmann, B. Jutzi, S. Hinz, C. Mallet, Semantic point

cloud interpretation based on optimal neighborhoods, relevant
features and efficient classifiers, ISPRS Journal of Photogram-
metry and Remote Sensing 105 (2015) 286 – 304.1050

[34] C. Westin, S. Peled, H. Gudbjartsson, R. Kikinis, F. Jolesz, Ge-
ometrical diffusion measures for mri from tensor basis analysis,
in: Proceedings of ISMRM, Canada, 1997, p. 1742.

[35] J. McDougall, E. C. Stoner, R. Whiddington, The computation
of Fermi-Dirac functions, Philosophical Trans. of the Royal1055

Society of London. Series A (1938).
[36] Y. Lipman, D. Cohen-Or, D. Levin, H. Tal-Ezer,

Parameterization-free projection for geometry reconstruc-
tion, ACM Trans. Graph. 26 (2007).

[37] C.-H. Lin, J.-Y. Chen, P.-L. Su, C.-H. Chen, Eigen-feature anal-1060

ysis of weighted covariance matrices for lidar point cloud clas-
sification, ISPRS Jour. of Photogr. and R. Sensing 94 (2014).

[38] F. Plastria, The Weiszfeld Algorithm: Proof, Amendments, and
Extensions, in: H. Eiselt, V. Marianov (Eds.), Foundations of
Location Analysis, volume 155, Springer, Boston, MA, 2011.1065

[39] M. Ritter, W. Benger, Reconstructing power cables from lidar
data using eigenvector streamlines of the point distribution ten-
sor field, Journal of WSCG Vol20, 20-th Intern. Conf. in Central
Europe on Computer Graphics, Visualization and Computer Vi-
sion (2012).1070

[40] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guen-
nebaud, J. A. Levine, A. Sharf, C. T. Silva, A survey of surface
reconstruction from point clouds, Computer Graphics Forum
36 (2017) 301–329.

[41] FitConnect, 2018. github.com/stefango74/fitconnect.1075

[42] StretchDenoise, 2018. github.com/stefango74/stretchdenoise.
[43] MssfReconstruct, 2019. github.com/gileoo/MssfReconstruct.

15

EUROGRAPHICS 2021/ H. Theisel and M. Wimmer Short Paper

Visual Analysis of Point Cloud Neighborhoods via
Multi-Scale Geometric Measures

Abstract
Point sets are a widely used spatial data structure in computational and observational domains, e.g. in physics particle simu-
lations, computer graphics or remote sensing. Algorithms typically operate in local neighborhoods of point sets, for computing
physical states, surface reconstructions, etc. We present a visualization technique based on multi-scale geometric features of
such point clouds. We explore properties of different choices on the underlying weighted co-variance neighborhood descriptor,
illustrated on different point set geometries and for varying noise levels. The impact of different weighting functions and tensor
centroids, as well as point set features and noise levels become visible in the rotation-invariant feature images. Finally, we show
how features in real-world LiDAR data can be intuitively visualized by images created with our approach.

CCS Concepts
• Human-centered computing → Visual analytics; • Computing methodologies → Point-based models;

1. Introduction

Point sets are commonly employed as a geometrical data struc-
ture, generated e.g. based on sensor or simulation data. Another
use is in the context of object classification or object synthesis;
there, point sets enhance labelled images and/or labelled object
models [MGY∗19]. In any case, local neighborhood information is
an essential component in many point based algorithms; and even
more so when including point set hierarchies. Related to this, we
propose to employ a multi-scale view on local neighborhood fea-
tures of point clouds, and use this for visualization. Our contribu-
tions in short are:

• A new concept of a multi-scale feature image, generated based
on a weighted co-variance measure.
• The application of the new technique to the visual analysis of

different point set properties; such as shape, noise, weighting
functions, and point set centroids.
• Investigation of different weighting functions and centroids, op-

timized for the visualization.
• Integration into an intuitive visual analysis tool.

Related to our work, Medioni et al. [MTL00] introduced tensor
voting to sample geometric properties onto a voxel grid, e.g. to re-
construct surfaces from noisy point clouds. From each tensor loca-
tion information was transported onto voxels via a voting process.
Nevertheless, they did not employ any weighting. Also, they fol-
lowed a different multi-scale approach. In contrast to voxel sam-
pling, we construct our multi-scale information on curves and
paths. Regarding our geometric measures we follow Westin et
al. [WPG∗97,WMM∗02], who employed tensor shape analysis for
fiber tracking in the human brain. They highlighted, classified, and
analysed axons, based on diffusion tensors originating from mag-

netic resonance imaging. Next, Natale et al. [NBT10] applied the
same shape factors on point clouds, which they obtained from time-
of-flight images. They introduced a multi-scale neighborhood and
developed a decision network based on shape values at different
scales. The latter permitted them to classify a point as being part
of a planar, edge/linear structure or as noise. We also built upon
this multi-scale idea and developed a visualization technique, tai-
lored to reveal properties of the tensor computation as well as the
point cloud neighborhoods, via color-mapped images. Moreover,
in the tensor (co-variance) computation we employ radial distance
weighting functions, which we also analyze visually. For these,
several different choices are possible; for instance, SPH smooth-
ing kernels [GM77], or compactly supported radial distance func-
tions [Wen95]; and their recent optimizations, e.g. [CS20].

2. Geometric Shape Measures

Shape factors: Local geometric measures are computed via a
weighted co-variance analysis, resulting in three shape factors,
based on the tensor eigenvalues, for linearity, planarity, and spheric-
ity [WPG∗97]:

˜
t =

1

∑N
i=1 ω(di)

∑N
i=1 ω(di)(vi⊗ vi), with (1)

vi = pi− c, di = |vi|/r, yielding

CL = (λ3−λ2)/L, CP = 2(λ2−λ1)/L, CS = 3λ1/L, (2)

with
˜
t the second order tensor, c a point of reference (i.e. the cen-

troid), pi the neighbors, ω a distance weighting function, and r a
radius of the local neighborhood of interest. The three shapefactors
CL, CP, and CS are computed from the eigenvalues λi of

˜
t; with

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

/ Visual Analysis of Point Cloud Neighborhoods via Multi-Scale Geometric Measures

Figure 1: Colors were chosen inspired by a real-world notion:
green for spherical vegetation, blue for planar water surfaces, and
light-gray for elongated shorelines (Photo: [Whi03]).

L = λ0 +λ1 +λ2. The three values can be considered as defining a
barycentric coordinate system, and can thus be directly mapped to
interpolate three associated base colors. Since Lin et al. [LFK∗13]
showed that colors are remembered better, when they are associated
with concrete real-world phenomena, we chose these colors with
a specific view in mind: green for volumetric (vegetation) blobs,
blue for planar (ocean) surface, and light-grey for elongated linear
(stone) shorelines. Figure 1 depicts the barycentric shape space as
colored ellipses, and shows a related natural scene.

Multi-scale view: Eq. (1) initially relies on a specific fixed neigh-
borhood radius which can be difficult to specify for an arbitrary
point cloud. Instead, we propose to change this radius over multi-
ple scales. Figure 2 illustrates how the three shape factors change,
as function of the radius. The graphs were determined for a spe-
cific centroid, in a point set representing a square. As can be seen,
the graph representing linearity decreases, when the radius grows
to include the corner; at this point, planarity starts to increase. For
a more compact representation, the three scalar graphs (and base
colors) can be merged into mixed colors, which is indicated by a
color-bar in the bottom of the figure. Such color-bars are computed
for a specific location and represent the change of the shape factors
with changing radii. Differences in these color-bars will result, de-
pendent on point cloud location. We propose to assemble these bars
next to each other for neighboring points of a point set. Figure 3
shows an example of such a visualization, for the point cloud of
a square. Note that the abscissa denotes the (ordered) point index,
while the ordinate represents the increasing radius. The corners in
the square are dominant with respect to planarity; the edges are
dominant with respect to linearity. Thus, the assembled color-bars

, CL
, CP

, CS

Figure 2: Geometric measures (right) computed for a centroid lo-
cation in an example point cloud of a square (left). Resulting geo-
metric measures depend on the selected radius; linearity in the ex-
ample is initially high and decreases when a corner is reached. The
bottom color bar (right, bottom) indicates the barycentric mixing of
the three base colors (in the 2D example only blue and light-grey).

Point Index

R
ad

iu
s

Figure 3: The multi-scale feature image (MSFI) illustrates the ge-
ometric measures by mixing the base colors; pixel columns (ver-
tically) denote a single measure graph at a specific location, for
varying radii. The red line marks the geometric measures for the
point on the square in Figure 2.

provide insight into the dominant shape features at various scales.
We denote these images as multi-scale feature images (MSFI). Note
that in arbitrary point clouds, points are not necessarily ordered
(as for the artificial square example). Still, an ordering could be
achieved. e.g. by sorting locally along the major eigenvector of a
selected point of reference. Another option could be sorting along
a path provided by a user (see below).

3. Analysis of the Visualization Method

In this section we first provide an investigation of the proposed vi-
sualization approach on simple 2D and 3D geometries. We also
present a visual analysis of the influence of weighting functions
and chosen centroids for the tensor computation.

Test geometries: For simplicity, we visualize the multi-scale fea-
tures of six 2D and three 3D sampled point clouds. Figure 4 shows
the resulting, rotation-invariant MSFIs. Various geometric proper-
ties can be seen, e.g. corners (planar/spherical peaks), straight lines
(bright areas), and curvature in and out of a plane (fading from
light-grey). Three of the geometries will be used for further discus-
sion and analysis below: rectangle (a), helix (b), 3D crossing (c).

Influence of tensor weighting: The weighting function ω in

Figure 4: Geometric measures illustrated via MSFIs, of six 2D and
three 3D point clouds of curves. Respective geometries are indi-
cated on the left of the measure image. Geometric properties, such
as corners, lines passing close-by, curvature, as well as 2D & 3D
distribution become visible in the images.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

(e + 1) 1(x 0.6) / 0.1

/ Visual Analysis of Point Cloud Neighborhoods via Multi-Scale Geometric Measures

(1)

(1) tree

(2)

(2) cable left

(3)

(4) (1)

(2)

(3)

(4)

(3) roof

(4) cables right

Figure 9: (Top:) Four line probes placed in real-world data. (1)
in a tree, (2) along a cable, (3) on the roof, and (4) along a bun-
dle of cables. (Bottom:) geometric multi-scale measures along line
probes; illustrating features such as: crossing cables, nearby ge-
ometry, edges, and homogeneous regions.

generated along these. Different local features become apparent in
the latter: (1) probe from top to bottom of a tree: the neighborhood
is dominated by sphericity. Inner points of the trunk appear as small
linear structures; (2) probe along a cable, close to the roof: linearity
dominates. The progressing discoloration (right) denotes a crossing
with a second cable. Close to the roof (left), the radius for dominant
linearity decreases, with higher sphericity at smaller radii close to
the edge; (3) probe diagonally across the roof: planarity is promi-
nent. Sphericity increases close to the gable (left); (4) final probe
located on the top one of a bundle of cables, to the right of the
house: linearity is dominant at two scales; firstly, at a small scale
for the single cable, and secondly, for the bundle of cables.

5. Conclusion

We have proposed a novel visualization paradigm to illustrate and
analyze local geometric features in point cloud neighborhoods.
Features such a geometric shape, indicating curvature or edges,
and presence of noise become apparent in colored multi-scale fea-
ture images. Further, we examined the influence of radial weighting
functions and the choice of a centroid on the geometric measures.
In our related, other developments , the visualization supported our
selection of optimal algorithm components (e.g. use of weighting
ωFD and of geometric median as centroid c). Finally, we presented
the utilization of the visualization paradigm in an analysis tool for
light detection and ranging (LiDAR) sensor data. MSFIs can be
generated and inspected along manually created paths, within the

point clouds. In future work we will improve the performance of
the point cloud shape measures with GPGPU computing, to main-
tain interactivity for very large datasets. We will also explore topi-
cal classification and clustering of the multi-scale measures, to en-
hance the visualization. Finally, we will explore the visual recon-
struction of the detected line structures, surfaces, and volumetric
objects. The interactive tool as well as the source code are provided
online [X.21].

6. Acknowledgment

This research was funded through the Vice Rectorate of X. within
the scope of the doctoral program X.

References
[CS20] CERVENKA M., SKALA V.: Behavioral study of various radial

basis functions for approximation and interpolation purposes. In IEEE
18th World Symp on Appl Mach Int and Inf (SAMI) (2020), p. 135ff. 1

[GM77] GINGOLD R. A., MONAGHAN J. J.: Smoothed particle hydro-
dynamics: theory and application to non-spherical stars. Monthly Notices
of the Royal Astronomical Society 181, 3 (12 1977), 375–389. 1

[LFK∗13] LIN S., FORTUNA J., KULKARNI C., STONE M., HEER J.:
Selecting semantically-resonant colors for data visualization. In Proc of
the 15th Eurogr Conf on Visualization (Chichester, UK, 2013), EuroVis
’13, The Eurogr Association, John Wiley, Sons, Ltd., p. 401ff. 2

[MGY∗19] MO K., GUERRERO P., YI L., SU H., WONKA P., MITRA
N. J., GUIBAS L. J.: Structurenet: Hierarchical graph networks for 3d
shape generation. ACM Trans. Graph. 38, 6 (Nov. 2019). 1

[MTL00] MEDIONI G., TANG C., LEE M.: Tensor voting: Theory and
applications. In Proc. 12th Congres Francophone AFRIF-AFIA de Re-
connaissance des Formes et Intell. Artif. (2000), pp. 1–10. 1

[NBT10] NATALE D. J., BARAN M. S., TUTWILER R. L.: Point cloud
processing strategies for noise filtering, structural segmentation, and
meshing of ground-based 3d flash lidar images. In 2010 IEEE 39th Ap-
plied Imagery Pattern Recogn. Worksh. (AIPR) (2010), pp. 1–8. 1

[Wen95] WENDLAND H.: Piecewise polynomial, positive definite and
compactly supported radial functions of minimal degree. Adv Comput
Math 4 (1995), 389–396. 1

[Whi03] WHITNEY B.: File:StJohnTrunkBay.jpg, 2003. https://en.
wikipedia.org/wiki/File:StJohnTrunkBay.jpg. 2

[WMM∗02] WESTIN C.-F., MAIER S. E., MAMATA H., NABAVI A.,
JOLESZ F. A., KIKINIS R.: Processing and visualization for diffusion
tensor MRI. Med Image Anal 6, 2 (2002 Jun 2002), 93–108. 1

[WPG∗97] WESTIN C., PELED S., GUDBJARTSSON H., KIKINIS R.,
JOLESZ F.: Geometrical diffusion measures for MRI from tensor basis
analysis. In Proc. of ISMRM, 5th Meeting, Canada (1997), p. 1742. 1

[X.21] X. X.: Multi Scale Feature Images for Point Clouds, 2021.
https://github.com/xx. 4

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

52 CHAPTER 3. CURVED LINE RECONSTRUCTION

3.3 Extensions

3.3.1 Comprehensive List of Parameters

For the reconstruction framework introduced above, we provide further informa-
tion on the various involved parameters. The latter are categorized as: user, auto-
matic, expert, and fixed. User parameters are expected to be provided manually;
automatic parameters are automatically set, e.g. based on the minimal distance
analysis; however, they may be adjusted manually, if desired; expert parameters
are not meant to be changed; but they could be adjusted in exceptional cases,
e.g. to accommodate extremely large point clouds, or to disable line pruning; fixed
parameters were optimized throughout the development of the framework and have
been chosen based on extended testing and evaluations; these should remain fixed.

Parameters are provided below in overview tables, sorted by category. Pa-
rameter name and type, as well as a short description are given. In Table 3.1
selected parameters are compiled – three user (U) and three automatic (A) pa-
rameters. Below, in Appendix A.2, additional expert (E) and fixed (F) parameters
are gathered.

Table 3.1: Overview table of selected algorithm parameters.

Name Type Description
StartPointsNr U User defined number of start points; selects N best from

the scored candidate set. If set to 0 a score threshold is
applied instead.

MaxIterations U Maximum number of streamline integration steps (par-
allel, bidirectional).

DistanceCutoff U Integration break criterion; maximally allowed distance
from integration point to closest data point; used to
overcome holes, see thp in Figure 3.7.

MSSFMaxRadius A Maximum radius of the multi scale computation; default
is automatic; 60∆mdn or reaching a break criterion, com-
paring the last two shape factors radii.

DistancePrune A Maximally allowed distance from a line end to the closest
point set point when shrinking lines from open ends as
factor of the integration step size h; default: 1.2.

StepMergeMul A Search radius for line mergers and intersections defined
as a factor of the integration step size h; default: 1.4.

3.3. EXTENSIONS 53

3.3.2 Line Endings

The integration of a streamline can be stopped according to five different criteria:
a) a distance check of the current integration point to the closest point of the point
cloud, b) a scene bounding box check, c) limiting the maximum iteration count,
d) by merging nearby line endings, and e) by intersecting lines. Line endings are
labeled either open or closed. The latter two stopping criteria result in closed line
endings. Open line endings are considered later in the pruning step to remove
long overshooting lines. Figure 3.7 shows the five different scenarios to end the
eigenvector streamline integration.

>thp

>bound

xj

j > jmax

xj-1

xj-2

xj-3

Open Ending Closed Ending

<tho

(a) (b) (c) (d) (e)

d1jλ

<thl

Figure 3.7: Five scenarios to end streamline integration: (a) the current integration
point xj is exceeding a distance threshold to the closest point of the point cloud,
(b) xj is located outside of the scene bounding box, (c) the maximum number
of integration steps is reached j > jmax, (d) open line endings meet (xj is close
to another open line ending), and (e) a line intersects another line (xj is close
to another line). Here, the two segments connected to the closest point and the
approaching line are tested by evaluating the closest point on skew lines for both
segments (see Appendix A.3).

In the case of meeting open endings (d) the two end points are averaged and
for both lines the point is set to be a closed ending. An intersection with a line
(e) is found by checking distances to the points of the lines. Note that lines are
sampled quite densely and homogeneously using the RK32 method with constant
step size. Then the “intersection point” is computed by finding the minimum
distance location on skew lines, as outlined in Appendix A.3. This approach is
more robust than relying on actual 3D line intersections. Therefore, two lines are
tested (see Figure 3.7): a line defined going through xj in its tangential direction
d1j = xj − xj−1, as well as lines for the segments before and after the closest
point on the approached line x̂i, with segment directions d̂i and d̂i+1. The closest
parameter λ on the segment lines is computed. Dependent on the two segments’
λ, a point is inserted in one of the segments. Alternatively, if λ /∈ [0.0, 1.0], x̂i,

54 CHAPTER 3. CURVED LINE RECONSTRUCTION

x̂i+1, or x̂i−1 is chosen directly. The new point is added as closed ending to the
terminated line.

3.3.3 Test Geometry Creation – Curve Sampling

The base sampling of the curve geometries was done regularly in arc length on the
test curves. Data defects – to simulate various effects such as sensor vibrations,
dust in the air, or shadowing – can be controlled by the following parameters:
jitter amplitude SJ , distribution blend SD, data hole start ta and end te, and the
number of added random outliers M within an enlarged bounding box controlled
by the outlier noise ratio SU = M/N with the total number of points N = K+M .
The final point set T is created by sampling a 3D curve function c : R→ R3.

ti = i/K, i = [0, ..., K], j = [0, ...,M] (3.15)

t̄i = ti adjusted to be uniform in arclength, (3.16)

with ti being uniformly distributed values from 0.0 to 1.0, the initial curve pa-
rameters; t̄i is uniform in arclength of the curve c. Further elements of the noise
generation are:

ri =
{
ri ∼ U(0.0, 1.0) | ri < ri+1

}
(3.17)

vi =
{
nrm(vx, vy, vz) | vx, vy, vz ∼ U(−1.0, 1.0)

}
(3.18)

τi = (1.0− SD) t̄i + SD ri, SD ∈ [0.0, 1.0] (3.19)

Pj =
{
c(τi) + SJ vi | if τi 6∈ [ta, te]

}
(3.20)

with ri being sorted uniform random values to generate distribution noise, and
vi random direction vectors for jitter noise; τi are sorted values, for blending the
uniform distribution and the random distribution values; nrm() denotes vector
normalization. The resulting points Pj now include distribution noise, jitter, and
data holes. U(a, b) denotes a uniform random distribution within the interval [a, b].

3.3. EXTENSIONS 55

Further, outlier noise and a displacement out of plane (So) are added:

max(A) :=
(
max

i
(Ai,x),max

i
(Ai,y),max

i
(Ai,z))

)T
, Ai ∈ R3 (3.21)

min(A) :=
(
min

i
(Ai,x),min

i
(Ai,y),min

i
(Ai,z))

)T
, Ai ∈ R3 (3.22)

d = ||max(P)−min(P)|| (3.23)

C =
(
max(P) + min(P)

)
/2 (3.24)

Qj =Pj + So

(
0.0, 0.0, cos

(π
2

(Pj,y − Cy)/(2dy)
))T (3.25)

Uk =
{

(ux, uy, uz)
T | u ∼ U(min(P),max(P)))

}
(3.26)

T = Q ∪ U, (3.27)

with d the diagonal of the bounding box, C the center of the bounding box and
U(a, b) – with ax < bx, ay < by, and, az < bz – a uniform random distribution of
points. Note that a slightly enlarged bounding box was used in practice. Finally,
T is the set of points of the final noisy geometry, additionally including outliers
and out of plane displacement.

3.3.4 Multi Scale Measure Graphs

In addition to the content provided in Ritter et al. (2021b)∼, Figure 3.8 also shows
multi scale measure graphs of a variation of the two Fermi-Dirac parameters. The
same geometry setup as in Figure 3.6 is utilized. Generally, the graphs show the
effect of the weighting functions in the tensor computation.

Each graph corresponds to one of 30 different weighting functions (Left) and
56 different Fermi parameters (Right); chosen as combination of the m and T
values shown in Figure 3.3. Differences can be seen in the value of the absolute
maximum, the location of the minimum, and in the smoothness of the resulting
linearity graph. For algorithms analyzing linearity graph CL(r), the following
properties were desired: high and low extreme values, small radius at the minimum,
and smoothness. The first property eases finding features, the second allows for
smaller radii – speeding up neighborhood computations – and the latter improves
numerical stability. Through an automated parameter variation the quadratic
weighting function was identified as a good candidate. Note that this coincides
with the observation in Ritter and Benger (2012), where this weighting was also
selected in the case of a specific application context. It generates a superior local
minimum at a rather small minimum radius. Later, it was replaced by the Fermi-
Dirac I) option, which yielded a minimum at a larger radius, but gave a smoother
shape (Ritter et al., 2021b)∼. Especially, when employing the geometric median or

56 CHAPTER 3. CURVED LINE RECONSTRUCTION

Figure 3.8: Influence of the weighting functions in jittered data on the multi
scale linearity CL(r). (Left:) Five of thirty functions with different minima and
smoothness. (Right:) T and m variations of the Fermi-Dirac function. A similar
behavior as with the 30 functions can be achieved by adjusting the two parameters.

the weighted mean the Fermi-Dirac I) removed otherwise occurring discontinuity
artifacts in the multi scale images. An explicit list and formulae of the tested
weighting functions are provided in Appendix A.4.

3.3.5 Weighting Experiments

Two experiments were set up and reconstruction errors were evaluated to inves-
tigate the influence of the weighting functions. For each setup a parameter run
was executed outputting the error measures: EH , EV , ELen, and ECom (Ritter et
al., 2021a)∼. Parameter runs were defined by additional key value pair control
files, where the key is related to a list of values. Each parameter set is mapped
to a unique index. Ordered by that index the results are computed and stored in
binary files; guaranteeing unique parameter and data access.

The first experiment reconstructs a circle and a rectangle. The goal was to
find good candidates for weighting functions (for ωT and ωI). The two chosen
geometries are very contrary in their shape properties: constant curvature for
the circle and straight lines with sharp corners for the rectangle. The following
parameter variation was chosen to investigate the reconstruction performance:

StepSize: 0.05, 0.1, 0.2, 0.4 Samples: 50, 100, 200, 400
TensorRadius: 1.0, 2.0, 4.0, 8.0 InterpRadius: 0.5, 1.0, 2.0, 4.0, 8.0

InterpWeightNr: 0, 1, 2, 3, ..., 28 TensorWeightNr: 0, 1, 2, 3, ..., 28
SJ : 0.0, 0.1, 0.2, 0.4, 0.8

Here, SJ is the jitter amplitude. The variation study thus results in 1, 345, 600

3.3. EXTENSIONS 57

parameter sets, applied both to the circle and the rectangle. Single-threaded, on
an Intel Xeon X5650 @ 2.67 GHz, the runs executed in total over 434 and 415mins,
respectively. Thus, a reconstruction took on average 19ms (including binary disk
IO).

As discussed above, for the streamline integration the standard RK32 integra-
tor was chosen. Besides 29 weighting functions, tensor radii, interpolation radii,
and jitter noise were varied. Figure 3.9 shows differences in the reconstruction
success dependent on the involved weighting functions. Note that only ’successful’
reconstructions were taken into account (Ritter et al., 2021a)∼; i.e. ECom > 0.95,
ELen > 0.95, and small EH . The numbers in the plots relate to the following
weighting function options2:

1 := step at 0.5r / r 4/11 := quadratic/Epanechnikov
2 := linear 6 := cubic
3 := linear inverse 10 := SPH kernel order 5

(a) Circle (b) Rectangle

Figure 3.9: Scatter-plots of tensor weight (x-axis) and interpolation weight (y-axis)
of successful reconstructions. (a) The influence of the interpolation weight (ωI) is
low for the circle; the 3rd tensor weight is performing best. (b) The influence of the
tensor weight (ωT) is low for the rectangle, but interpolation weight 10 performs
slightly better than others.

There is a relation between the chosen function and the number of successful
reconstructions. As can further be seen, the results are different for the circle
(a) and the rectangle (b) case. For the former, the weighting in the interpolation
(y-axis) is of limited influence, in contrast to the tensor weight (x-axis); there

2Note that in the Appendix A.4 all functions are listed. Here, for 1 a step function was
employed with the step at 0.5.

58 CHAPTER 3. CURVED LINE RECONSTRUCTION

function number 3 stands out. For the rectangle (b), the tensor weight has a lower
influence; as interpolation weight, function number 10 could be a good candidate.

Following this initial study, a second variation test was executed, specifically
to find optimal parameters for the Fermi-Dirac (FD) function. Parameters were
limited, dependent on the result of the experiment above. To find the best FD
parameters for the tensor computation the interpolation weight uses the 5th order
SPH kernel. To find the best interpolation FD parameters, the cubic weighting
was chosen. The parameter variation of the FD optimization experiment is as
follows:

T : 0.5, 0.49, 0.48, ..., 0.0 Seed: 0, ..., 4 InterpRadius: 3
m: 0.0, 0.05, 0.10, ..., 1.0 Samples: 200 T/I-Weight.: 11/10
SJ : 0.2, 0.4, 0.8 StepSize: 0.05 TensorRadius: 3

(I) T: 0.1, m: 0.6

(III) T: 0.11, m: 0.18

Rectangle Circle

(a) Parameter selection for tensor weighting.

(II) T: 0.05, m: 0.35

Rectangle Circle

(b) Parameter selection for interpolation
weighting.

Figure 3.10: Scatter plots of the best 10% reconstructions (with respect to EH)
varying the FD parameters T (x-axis) and m (y-axis). The upper row shows the
results for the circle (left) and the rectangle (right) for each main column. The
lower row illustrates the sum of the upper scatter plots. Optimal regions are
marked by ellipses – two are found in case of the tensor computation and one for
the interpolation.

3.3. EXTENSIONS 59

Figure 3.10 shows the results of the experiment, again as scatter plots of the
parameters; but this time limited to the 10% best cases regarding the distance
error EH . The top row provides the plots separated by circle and rectangle. The
good regions for the FD parameters are quite complementary, when comparing the
top row in (a) and (b). Thus, a weighting function chosen for optimal behavior
at sharp corners is not the best for curved geometry. In an attempt to find an
overall good parameter set, the two cases are summed up as shown in the bottom
row. For (a) two optimal regions (I) and (III) are identified. Due to the greater m,
(I) takes more distant information into account than (III). Thus, (I) was chosen
as the overall best candidate for ωT . The larger footprint is beneficial for noisy
scenarios. For (b) the choice is generally less sensitive. A single optimal region
(II) was identified with rather low values of T and m.

60 CHAPTER 3. CURVED LINE RECONSTRUCTION

3.3.6 Centroid Revisited

Weighted Mean: As outlined above, different strategies of choosing the centroids
c in the tensor computation were analyzed. The final selections and some visual
evaluations are presented in Ritter et al. (2021a)∼ and Ritter et al. (2021b)∼.
Here, the locations of centroids with increasing radius is investigated further, as
well as the effect of the introduced weighting function onto the geometric median
cL1ω.

The use of a filter was introduced, as optional pre-processing step, to improve
the locations of a noisy point set before starting the multi scale analysis and recon-
struction process. The filter moves each point to the location of its neighborhood
centroid of a given radius and weighting function. Thus, all original points in the
cloud would be replaced and the subsequent steps would apply to the replaced,
filter points. Figure 3.11 demonstrates three different variants of the pre-filtering
on a noisy triangle geometry and illustrates the movement of points by the applied
centroid filter with increasing filter radius. The brightness of the points relates to
the size of the chosen neighborhood radius: light grey r = 0, black/black outline
r = 4. The side length of the triangle is 10.

(a) Mean c (b) Median cL1 (c) Weighted Mean cω

Figure 3.11: An optional pre-filtering step allowed for an improvement of point
locations for noisy data. A point is moved to its centroid using a specific radius r
and weighting function ωC ; r is going from 0 (light points) to 4 (black/black outline
points). The undistorted ground truth geometry is shown by lilac lines. Employing
the cL1 preserves ground truth best, c worst, and cω is located in between.

In case of the median (b) or weighted mean (c) points move on trails with
increasing filter radius. No trails are noticeable for the mean; with increasing
radius the points jump noisily. The final positions are marked by black outlined
dots. Although the median can preserves the corners and a line structure better,

3.3. EXTENSIONS 61

0

0.1

0.2

0.3

m
s

PDT

MEAN
WMean

WMedian

0.3 0.4 0.5 0.6 1.0

0

0.1

0.2

0.3

1.0

Med-T0.4-m0.5

Med-T0.2-m0.5

Med-T0.1-m0.25

Med-T0.05-m0.12

MEAN
Mea-T0.2-m0.5W

Mea-T0.1-m0.25
Mea-T0.05-m0.12

0.0

W
W

W

W

W

W

Figure 3.12: Comparison of location change and computational performance for
different centroid methods. (Left:) Changing weight parameters moves weighted
geometric median and weighted mean closer to denser geometry regions. Outliers
are placed within [0.0, 1.0] × [0.0, 1.0]; a dense line point cloud at the bottom.
(Right:) Box plots of computation times per method: five geometries with 716
samples were tested twice.

it has a stronger tendency to form clusters as the weighted mean.
Besides the different geometrical behavior, the centroids exhibit varying com-

putational complexities. Figure 3.12 demonstrates a specific test scenario for this.
The influence of the weighting function ωC as well as time measurements are pro-
vided. The test configuration consists of 2D points (blue circles) placed randomly
within the domain [0.0, 1.0] × [0.0, 1.0]. Additionally, a point-sampled line is in-
serted at y = 0.0, with 0.3 ≤ x ≤ 0.5; in total yielding 716 points in 2D. Note that
only a sub-region of the overall domain is visible in Figure 3.12 (Left); as indicated
by markings on the axes.

As mentioned above, the geometric median as well as the weighted mean employ
a weighting. The shape of the weighting function controls how strong the centroid
is pulled towards denser point distributions. In the left subfigure, the mean c is
depicted, as well as resulting locations for weighted mean cω and weighted median
cL1ω, when using different weight settings. The Fermi-Dirac function is employed
to enable a continuous variation. Note that the weight parameters T and m can
be used to move the geometric median (grey crosses) closer to the denser point
region at the bottom (i.e. the sampled line). The same is true for the weighted
mean (black plus signs); however, the position change is less pronounced.

For the time measurement (right subfigure) five random seeds for creating the
2D point test scene were employed twice; thus, the computation time box plots
are based on ten measurements per method. In the examine 2D test scenario, the
geometric median is on average five times slower to compute than the mean and

62 CHAPTER 3. CURVED LINE RECONSTRUCTION

weighted mean. The mean and its weighted variant exhibit similar performance.
They scale similarly with the number of points, and are independent of the local
spatial distribution in the neighborhood. In contrast, the median suffers from the
addition iteration loop, while convergence also depends on the local distribution.

In the reconstruction framework, the centroid computations can be employed
at several algorithmic stages, e.g. as a pre-filter on all point locations, as outlined
above, replacing the original points completely; as the centroid in the tensor com-
putation; or during the streamline integration. In the final version, the pre-filtering
is not employed anymore. For the tensor neighborhood computation concerning
the multi scale geometric measures, we suggest to employ the geometric median.
Note that the geometric measures are pre-computed in parallel.

High Noise Rates: The effect of the centroids on the reconstruction per-
formance in highly noisy data was also explored. A first test is indicated in Fig-
ure 3.13; a point-sampled circle with very high jitter, distribution, and outlier noise
had to be reconstructed. The weighted median performed more robust, when used
for starting point score, the geometric measures, and the local maximum score
(Ritter et al., 2021a)∼. Moreover, in this high noise case only one or two starting
points were used.

Figure 3.13: Reconstruction attempts in very noisy data
(SD =SJ = 1.0, N = 452,M = 904). Closed geometries, such as the circle,
can be reconstructed in extremely noisy data with the proposed algorithm. The
influence of different centroids is indicated. (Left to Right:) PDT, mean, weighted
median.

Nevertheless, in such noisy cases the convergence of the geometric median can
be slower; in this example the multi scale computation took 3300ms. In contrast,
using as centroid the PDT or the mean c took 2600ms and 2700ms, respectively;
albeit yielding unsuccessful reconstructions. In general, the computation time de-
pends on the data set. As an example, the computation of the geometric measures

3.3. EXTENSIONS 63

for the ’monitor’ case (Ritter et al., 2021a)∼ requires 85ms when using the median,
40ms for the PDT, and 50ms when using the (c), respectively.

Further, the choice of the centroid has an influence on the starting point se-
lection. Figure 3.14 shows the four best start point candidates for three different
centroid types. While the mean provides better integration directions and radii,

Figure 3.14: Centroid influence on start point selection (similar setup as in Fig-
ure 3.13); from left to right: existing point (PDT), mean, median. The best start
points are found when using the point distribution tensor. Since the points remain
fixed, candidates in the center of noise clusters are scored better.

the moved centroid results in higher starting point scores for locations at the bor-
der of or close to point clusters. In contrast, in the point distribution tensor an
existing point of the cloud is used; this leads to higher scores for points centered
within point clusters. These usually represent a better choice for starting the
reconstruction. Thus, in the proposed final reconstruction framework, a PDT is
always employed for computing the starting point score. Otherwise, the weighted
mean cω is chosen as centroid, with the quadratic inverse as weighting function.
This was found to be the best compromise between reconstruction quality and
computational performance. Finally, note that for extremely noisy cases start
point candidates with less than six neighbors within a small radius were skipped
(Ritter et al., 2021a)∼.

Large Radii: The choice of the centroid also leads to differences in the multi
scale geometric measures at large scale radii. Figure 3.15 depicts the geometric
measures over a large radius scale of a jittered wave example. When using the
median or mean centroid, the shape values converge to the same value over all
points (yielding the same color in the top row of the visualizations). When using
an existing, fixed point reference different values are reached for each point (i.e. no
constant color in top row). Also, larger changes in the measure values result with
growing radii.

64 CHAPTER 3. CURVED LINE RECONSTRUCTION

In the reconstruction framework, a maximal analysis radius for the geometric
measures can automatically be derived from point distance statistics. The absolute
differences between the geometric measures of the current radius are compared to
those of the previous radius. If for all points the change falls below a threshold, the
computation is stopped. This automatic maximum radius detection only works
for the median or mean variants, since the values converge to a similar value. In
other cases, a maximum radius has to be specified by the user.

Figure 3.15: Multi scale geometric measures visualized as colormap images (Ritter
et al., 2021b)∼ of a wave geometry example (Left) with slight jitter noise. (Right;
Top to Bottom:) resulting colormap images for median cL1, mean c, existing point
centroid c. For large radii the median and mean converge to one single value;
visualized as a row of same color at the top (a),(b). In contrast, using an existing
point yields differing constant measures at large radii, but varying per point; non-
constant color row (c).

3.3.7 Separated Noise Rate Performance

Data coming from sensors and real world surveying is usually distorted by noise.
Four types of possible errors in the geometry relating to flaws that may happen
in the data capturing were added in our experiments. Unsteady trajectories and
vibrations of a moving vehicle introduce jitter noise. Intensity cut-offs in the light
detection sensor or occlusion lead to data holes. Levitating dust particles or other
small objects produce additional random signals as outliers. Varying densities of
signals on the geometry may be introduced by shadowing, and multiple scan strips,
leading to distribution noise. For instance, the latter can be included, by using
uniformly distributed random numbers as parameters in the geometry creation
(see Section 3.3.3). The noise rate nR was derived to be able to create a summary
success plot dependent on the noise, which is comparable for all geometries (Ritter
et al., 2021a)∼. As an extension, Figure 3.16 provides further error plots, employing
nR for the abscissa. The subfigures illustrate the use of the error rate, by plotting
average distance error, the relative and absolute success rate, and the total number
of target geometries. As can be seen, the average distance error εV increases with

3.3. EXTENSIONS 65

0

0.1

0.2

0.3

0.4

0.5
εV/nR

ε V

nR

0.0 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1
Relative

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

Total

0 0.1 0.2 0.3 0.4 0.5 0.6
0

500

1000

Absolute

Circle (1)
Rectangle (2)

Triangle (3)
Line (4)

Crossing (5)
Wave (6)

Elbow3D (7)
Helix (8)

Mikado (9)
Cross3D (10)

Figure 3.16: Success rates over combined noise rate nR; as presented in Ritter et
al. (2021a)∼. The plots relate to the best selected WMN run shown by the bar
plot in Figure 17 in the publication. The illustrated lines reveal more details of
the decreasing rate over noise rate.

increasing noise rate (top, left). Related to that, the overall success performance
(relative and absolute) decreases with increasing noise rate (top, right; bottom
right). Note that in the plots the lines stop when no successful reconstructions
could be generated. As defined in Ritter et al. (2021a)∼, to be successful, the
error measures, εH , (maximum distance to ground truth), εV (average distance to
ground truth), εLen (length ratio), and εCom (completeness) have to fulfill certain
criteria. In contrast, the box plots (top, left) indicate the distance error of all
reconstructions, also including unsuccessful attempts.

As in the publication a parameter run of 127 k variations was carried out as
presented in Section 6.5, there. Similarly, the success performance can be read
off, e.g. the Wave is the most challenging one with the lowest successes and the
highest error. Note that the error was limited to be successful to ε ≤ 0.25.

The bottom figures show the absolute number of all attempts (’Total’) and
the successful ones (’Absolute’). The total plot shows how the influence of the
geometries on the noise rate. Ideally, all geometries would show the same trend.

66 CHAPTER 3. CURVED LINE RECONSTRUCTION

Then, the noise rate would be fully independent of the geometry itself and capture
noise properties only. This is not the case here. However, they show a rough
similar trend, except for the Mikado where the noise rate estimate yield higher
values. Figure 3.17 illustrates the dependency of nR and the separate artificial
noise rates.

0

0.2

0.4

0.6

0.8

1
Sj Sd

N
oi

se
R

at
e
n R

M/N

0.70.1 0.3 0.5 0.9 0.7 0.30.1 0.00.3 0.10.5 0.20.9 0.4

Figure 3.17: Artificial noise rates and noise rate nR illustrated via box plots of
127 k reconstruction attempts. The noise rate increases with jitter noise SJ , less
with outlier noise SU = M/N and is independent of distribution noise SD.

The noise rate nR is positively correlated with jitter noise (left). This shows a
linear trend. Further, it increases with outlier noise (mid), but is independent of
distribution noise (right).

Figure 3.18 illustrates successful reconstructions dependent of each artificial
noise rate. The first column of the plots shows the influence of the different
noise types on the overall reconstruction average distance error; similar to Fig-
ure 3.16 (top, left). There is almost no influence on the reconstruction error due
to distribution noise (mid). The average error stays constant. Also, the success
rate itself varies only marginally. The jitter noise relates strongest and quite lin-
early with εV (top). The absolute success rates also drop smoothly with increasing
noise (top, right). Also, geometries perform differently. While the success of Cir-
cle and Rectangle starts decreasing at SJ > 0.4, the other geometries decrease
earlier. Wave and Mikado from the very start. The wave performs worst and is
quite fragile to jitter noise, due to the high curvature regions. The uniform noise
has a almost constant relation to the average reconstruction error (bottom). The
overall performance depends on the geometry (right). Again, the wave shows the
worst success rate. Note, the plots always include all noise types. They are just
presented dependent on the different type. E.g. all the jitter and distribution noise
variations are included in the leftmost box plot of the uniform average error plot
(bottom, left).

The overall shapes of the error graphs demonstrate that the reconstruction pro-
cess was made robust against distribution and uniform noise. The success rates

3.3. EXTENSIONS 67

0 0.2 0.4 0.6 0.8 1

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Number of Successes

SJ

SD

SU

0

0.1

0.2

0.3

0.4

0.5

0.0 1.0

εV

0.0 0.4

0.1

0.2

0.3

0.4

0.5

0.0 1.0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4

400

600

800

1000

1200

1400

Circle (1)
Rectangle (2)

Triangle (3)
Line (4)

Crossing (5)
Wave (6)

Elbow3D (7)
Helix (8)

Mikado (9)
Cross3D (10)

Figure 3.18: Success rates shown for each single noise measure; (Top to Bottom:)
SD, SJ , and SU . Here, the influence of the different types of noise can be ready
seen more precisely, but many more plots are required. (Left to Right:) εV and
absolute success rate over each distinct artificial noise rate. The box plots show
the error of all (also not successful) reconstruction attempts.

stay constant or decrease only slightly. Jitter noise has the strongest influence.
This is an expected behavior as the noise distorts the geometry out of the tangen-
tial direction. Especially, in high curvature regions the ground truth tangential
direction is destroyed. This results in high uncertainties in the reconstruction of
such regions. The combined noise rate plots (Figure 3.16) is not as clearly read-
able as the separated analysis. However, it allows to combine all the noise types
and illustrates the overall trends correctly. The geometries were explicitly chosen
with very different features, such as constant curvatures, sharp corners, varying
curvature, crossings, 2D/3D.

68 CHAPTER 3. CURVED LINE RECONSTRUCTION

3.3.8 Fourth Order Neighborhood Tensor

A possible extension to the second order considerations is the (still preliminary)
idea of carrying out an additional uplift of the second order tensor. Analogously
to encoding many directions of a point neighborhood into one tensor, it may be
possible to encode all second order tensors of the multi scale tensor into one 4th

order tensor. Formally this is defined as:

˜
T =

1∑N
i=1 ω4(ri,

˜
t(ri))

N∑

i=1

ω4(ri,
˜
t(ri))

(
˜
t(ri)⊗

˜
t(ri)

)
, (3.28)

with i the index of a multi scale radius,
˜
t(ri) the 3×3 neighborhood tensor at that

radius, ω4(ri,
˜
t(ri)) a weighting function dependent on the radius and the tensor at

that radius (e.g. to employ a shape factor for weighting), and
˜
T the fourth order

3 × 3 × 3 × 3 multi scale neighborhood tensor. Note, that due to the symmetry

˜
tij =

˜
tji, also

˜
T is symmetric in many components:

˜
T ijkl =

˜
T jikl =

˜
T ijlk =

˜
T ikjl =

. . ., etc. Thus, the 81 components in effect reduce to 15 unique ones. Figure 3.19
visualizes the major eigentensor (of 2nd order) of

˜
T , as colored ellipses at different

point cloud locations.

Figure 3.19: Tensor ellipses are provided to illustrate second order tensors. The
respective major eigentensor of an eigenanalysis of the fourth order multi scale
neighborhood tensor is shown.

For the implementation, both the most compact super-symmetric representa-
tion as well as the Mandel notation layout, utilizing 21 components, was employed.
The latter is specialized for the occurring symmetries (Abbasloo et al., 2016). For
further description of Voigt and Mandel layouts, consider Brannon (2018). Both
implementations provide internal look-up tables for direct tensor index access. The
source code is also part of Ritter (2021). Nevertheless, the use of the 4th order
tensor was not explored further in the scope of this thesis.

4 Computational Performance
Optimization

4.1 Preliminaries
A key component of the computation of all the neighborhood tensor or covariance
variants in a point cloud is finding the involved neighboring points: i.e. finding
for one point the points inside a local neighborhood, or finding a cluster neigh-
borhood, without an explicit point of reference. For performing the related range
queries several algorithms already exist and can be employed. However, algorithms
can be chosen more optimally dependent on the underlying hardware or software
infrastructure and on the final computational intention. Besides the pure con-
ceptual performance of the algorithms, they also use different memory orderings
of the stored data. This has an additional impact on the run time performance
due to cache misses, dependent on the hardware. Within the scope of this thesis
the following algorithms for neighborhood searches were implemented and ana-
lyzed: 1a) kd-tree, 1b) octree, 2a) uniform grid hashing & bitonic sorting, 2b)
uniform/perspective grid accumulation, and 3) 2D sampling in screen space. The
tree-based methods were implemented on the CPU, the grid-based ones on CPU
and GPU. The 2D sampling is a GPU-only implementation, in screen space in-
cluding depth information. Next, brief overviews of the employed techniques and
results are provided.

4.1.1 Tree Neighborhood Searches

Tree-based neighborhood searches divide space into subspaces, and organize and
connect those hierarchically. When looking for neighboring points, the correspond-
ing subspace can be found quickly, and then traversed from there to other candidate
subspaces. Data, such as point coordinates, can be stored directly or via an index
inside the tree. Also, meta data or accumulated data can be stored inside subspace
nodes.

69

70 CHAPTER 4. COMPUTATIONAL PERFORMANCE OPTIMIZATION

1
2

3

5

4

6

7

1

2

3 6

75 4

8
8

1
2

3

5

4

6

7
8

1 3

457 6

8 2

Figure 4.1: (Left:) Illustration of points organized as kd-tree. Here, the binary tree
is constructed by rotating axis aligned hyper planes after each insertion. (Right:)
An octree splits space by hyper cubes with half the side length of the outer cube.
Each tree node may hold up to 2dim children. The grey line indicates the equiva-
lence to the Z-curve, which creates the same serialization of the points.

Kd-tree: Figure 4.1 (Left) shows the concept of a kd-tree. Here, space is split
by hyperplanes (space dimension minus one) in alternating, axis-aligned orienta-
tions. This procedure allows to create a binary tree for N -dimensional spaces.
The specific spatial organization depends on the order of points inserted into the
tree. In the example shown, space is split with each point inserted – yielding a
new node in the binary tree. Points are labeled according to their insertion order.
Each consecutive split refers to the actual subspace. In this example, the two
dimensional space is divided by one dimensional hyperplanes (i.e. lines). A node
is inserted left in the tree if being left or above the current node’s dividing line;
and inserted right in the tree, otherwise. The kd-tree was the first chosen search
algorithm in our work, since it allows for an N -dimensional implementation and
results in a ’simple’ binary tree.

Octree: As an alternative, the octree was investigated and implemented. Here,
space is split into hypercuboids of equal size; in each level of split: four rectangles
in 2D and eight cuboids in 3D. The example in Figure 4.1 (Right) shows the same
points of the kd-tree example organized in an octree. Each node of the octree has
up to four children. Empty sub-spaces are omitted in the tree structure. Octrees
are the de facto standard in computer graphics, as they can be combined well with
voxel and space filling curve based algorithms, such as the Z-curve. The light gray
line illustrates the Z-curve ordering of the octree cells in 2D. Note that the order
of the octree nodes, read from left to right, follows the same order as for the curve.
Z-curves and octrees are equivalent in terms of data ordering and, thus, compatible
in algorithmic designs. In our implementation a leaf node is a bucket and may
contain up to N points, before it is split further. N = 64 was found to yield the
best performance for 3D points represented in 32-bit floating point numbers. By

4.1. PRELIMINARIES 71

using buckets, memory organization is beneficial with respect to cache misses. In
contrast to the kd-tree, octrees require a reasonably good bounding hypercuboid1

for initialization; before inserting the first data point. For some algorithms this
information is not available.

Trees as spatial search structures have the advantage that they allow to skip
large subspaces of the data; e.g. for range queries, such as selecting all points
close to a certain position, within a certain radius. All subspaces farther away
than the radius can be skipped. Tree structures adjust well to highly irregular
data, i.e. when there are regions with a very high and with a very low (point)
density within the same data set. Moreover, trees usually do not allow for a direct
node access. Tree nodes have to be traversed from the root node to find the
desired subspace, or, traversed from a subspace up and down in the hierarchy.
Bidirectional connections are not necessarily available. Note that creating a tree
already requires to iterate through the data once. Which can be inefficient, when
a certain query can also be already solved by one full linear data iteration. Finally,
it is not straight forward to implement trees on GPUs, as they usually build on
maps or pointer based data structures. GPU memory access is organized locally
to the many threads (and work groups) and memory buffers have to be prepared
in a compatible structure.

Concerning the work in this thesis, the kd-tree was employed in the initial de-
velopments: Ritter et al. (2012)*, and Ritter and Benger (2012)*. The octree was
later introduced via Schiffner et al. (2014)* and then used in the further develop-
ments – as it showed superior performance: Schiffner et al. (2015)*, Grasso et al.
(2015)*, Ritter et al. (2021a)∼, and Ritter et al. (2021b)∼.

4.1.2 Grid based Methods

Grid Hashing and Bitonic Sorting: Using grid structures is another way to
organize subspaces for point cloud data. Points can be inserted into cells, e.g. by
storing point indices together with a cell identifier. Uniform grids are especially
suited, since a point location can directly be transformed into an integer coordinate
(index of a grid cell); by knowing the bounding box and resolution of the grid. Once
points are organized in a grid, neighbors can be quickly found by iterating through
neighbored grid cells and the associated points.

In this thesis, also a grid based method has been introduced. Its focus was
on a pipeline for general purpose computation in the neighborhood of possibly
large point clouds in full detail; while utilizing GPU and CPU resources. OpenCL
was chosen for the implementation to support all possible, heterogeneous compute
devices. The point distribution tensor was chosen as an algorithmic ’application’

1bounding box in 3D

72 CHAPTER 4. COMPUTATIONAL PERFORMANCE OPTIMIZATION

Figure 4.2: Grid hashing and sorting: points are associated with a cell identifier
(left) and then sorted by that hash. A sorting network for eight numbers is il-
lustrated (Peters et al., 2011). An additional lookup structure is set up (cell start
index and cell size) to finally allow direct access of a cell in the sorted array (right).

operating in point cloud neighborhoods. To enable the support of possibly large
data an out-of-core approach had to be followed. Data was first pre-processed
into large data fragments – a large scale uniform grid – each fragment was then
processed using the fine grain algorithms. To avoid border artifacts, data was
duplicated at the borders at so called ghost zones. Ghost zones have to be as large
as the neighborhood radius used in the fine grain algorithm. The overhead of data
duplication was acceptable and enabled a completely independent computation
per fragment. Thus, a data fragment can be sent to any compute device on any
platform holding all necessary information. The pre-processing was implemented
on a converter level and provided an enriched HDF5 file.

Next, each point in a fragment was labeled by an identifier of a grid cell (hash),
as can be seen in Figure 4.2. Points were then sorted according to their hash value.
A lookup structure was built to find the start index of the serialized cell sorted
points per cell. Thus, the sorted point array can directly be accessed by a cell
index, by first retrieving the cell start index in the point array (or a data array
sharing the index layout). In a first pass data is sorted and in a second pass the
point distribution tensor computed. Neighbors can now be efficiently found by
traversing the points of a cell and of the neighboring cells. Here, the cell size was
chosen, such that a maximum of 3 × 3 × 3 cell neighborhood in 3D had to be
traversed.

For sorting the bitonic algorithm was chosen. It is especially suited for paral-
lelization and can also be hardwired. Figure 4.2 illustrates such a sorting ’network’
(Batcher, 1968). A number can be input for each line and is compared and possi-
bly replaced along the arrow connections. Here, a sorting of 8 numbers requires 6
steps. Each step involves a possible switch of two independent data pairs, allow-
ing for a fine grain parallelism in each step. This approach fits well on the GPU
architecture, as it is built from many small computational units. An open source

4.1. PRELIMINARIES 73

bitonic sort implementation of NVIDIA was rewritten in OpenCL for our work.
Performance was evaluated by comparing to results from an earlier independent

implementation. Compared to the first kd-tree based CPU parallel implementa-
tion a speed up of about 24 was achieved by switching to the grid based approach;
and another speed up of again about 24 by utilizing GPU hardware (AMD Fire
Pro S9000). The work further analyzes optimal data fragment scheduling on het-
erogeneous computing devices (see Grasso et al. (2015)* below).

Grid Cell Accumulation on the GPU A visualization representation of
a point cloud does not necessarily require to draw a geometric object for each
point. Especially, in laser scanning higher level geometry such as surfaces, lines,
or volumes are just sampled by points. A viewer may be more interested in seeing
what was scanned; i.e. the higher level geometric objects. The key idea of the here
proposed method is to work with the limited resources of a GPU and create higher
level geometric representatives for low level point clouds on the fly in real time.
Having a limited space and computation time available, a grid structure of fixed
size is defined. The size depends on the available resources and is chosen, such
that the performance is optimal and resolution (visual level of detail) is feasible.
For implementation the (then newly introduced) atomic add of GLSL 4.3 was
employed2. This allowed to accumulate data along with vertex clusters; for each
grid cell. The three key aspects of the algorithmic design were:

1. Create high level representatives for geometry in real time on the GPU.
2. Use a fixed number of representatives dependent on available GPU resources.
3. Accumulate representatives from unsorted point cloud data.

Point cloud data is uploaded raw and unsorted. A three pass method is applied:
First, points are clustered in 3D grid cells (uniform or affinely transformed uniform)
– as illustrated in Figure 4.3 – and additional properties, e.g. the mean center is
accumulated during the insertion. The second pass moves points to a neighboring
cell if the point is close to the cell’s border and if the neighboring cell is less
populated. The third pass reduces the data per cell and computes data required
for a higher level representative.

In Schiffner et al. (2014)* the basic algorithm was introduced and tested on dif-
ferent data sets stemming from LiDAR as well as an astrophysics SPH simulation.
The origin of the data sets is described in more detail in Section 5.1.1. Also, the
planarity shape factor was included into the move operation to encourage cells
locally to be more planar. Uniform grids and perspective grids were tested with
different resolutions. Real time performance was reached for a few million points.
Compared to a CPU parallel implementation a speed up of one order of magnitude
was achieved. Visual results were good for the LiDAR data, but not so for the

2https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/atomicAdd.xhtml

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/atomicAdd.xhtml

74 CHAPTER 4. COMPUTATIONAL PERFORMANCE OPTIMIZATION

Figure 4.3: Raw points are clustered into grid cells (left), moved to neighbors
when relatively densely populated and close to a cell border (center), and finally
reduced (right), e.g. displayed as oriented splats. All passes are executed in real
time on the GPU via compute shaders. The reduced data is then employed for
final rendering. The move pass allows the grid to adjust to the underlying point
set.

SPH simulation. Here, the move pass was not able to adjust to the wider range of
scales in the data.

In Schiffner et al. (2015) the method was extended further mainly on the part of
visual representatives; i.e. oriented splats, cell filled quads and boxes were created
in a geometry shader. Also, a base line comparison to an octree based cluster-
ing was added. Different normal estimation methods were employed; a tensor
based normal estimation showed best results, but had the highest computational
complexity. A normal estimated by pointing in the direction of empty cells in com-
bination with a larger cell neighborhood performed better with respect to visual
quality and performance.

Screen Space Sampling

When the neighborhood information is required for rendering only, instead of gen-
eral purpose computing or algorithms, the standard rendering pipeline can directly
be utilized. Our developed method estimates a normal vector of a raw – i.e. un-
sorted – point set after rasterization in the fragment shader stage.

As illustrated in Figure 4.4, vertices of a point cloud are ’projected’ onto the
virtual camera image plane. With an enabled depth test, the resulting fragments
provide depth values besides color and are organized in a 2D grid. In the simplest
form, normals can be computed using the GLSL derivative functions (dFdx and
dFdy). However, this turned out to be very unstable. Thus, small neighborhoods
were defined, up to a sample count of 25; preferring a diagonal layout around the
center fragment. Also, a multi depth buffer was employed; up to eight depth values
were unprojected per fragment into world space to compute an estimated normal.

4.1. PRELIMINARIES 75

Figure 4.4: Screen space normal estimation. A point cloud (left) is projected onto
the image plane (center). A depth image allows to operate on pixel neighbors to
estimate a surface normal, here illustrated in a 3× 3 neighborhood.

Points with too large distance to the point of reference were discarded from the
computation in world space. In total, four estimation methods were tested:

1. GLSL derivative functions;
2. cross product of the unprojected samples area diagonal vectors;
3. cross product of direction vectors from the center to all neighboring unpro-

jected samples in counter clock-wise ordering;
4. the minor eigenvector of the weighted point distribution tensor.

An optional smoothing pass was implemented operating on the estimated normals
as a post processing step. It was possible to achieve feasible results in real time
with a lower sample number, e.g. with the diagonal preferred sampling. The tensor
estimation created the smoothest visual results. High sample counts improved the
quality at cost of a low frame rate. Test cases and one LiDAR data set showed, that
the method’s applicability depends on the point size and point cloud density with
respect to the frame buffer. Ideally, the point density provides a different point
for each, or a few pixels. For the LiDAR data set this could only be achieved by
overview visualizations and not by inspecting close ups. Therefore, an application
could be in the quick pre-visualization of yet unprocessed raw point cloud data
allowing a shaded view for users to find regions of interest for detailed processing.
More information is provided below in Schiffner et al. (2013)*.

doi: 10.1016/j.procs.2015.05.217

Point Distribution Tensor Computation on Heterogeneous

Systems

Ivan Grasso14, Marcel Ritter234, Biagio Cosenza1, Werner Benger345,
Günter Hofstetter2, and Thomas Fahringer1

1 Institute for Computer Science
2 Institute for Basic Sciences in Engineering Science

3 Institute for Astro- and Particle Physics
University of Innsbruck, Austria

4 AHM Software - Airborne Hydromapping
5 Center for Computation & Technology at Louisiana State University

Abstract
Big data in observational and computational sciences impose increasing challenges on data
analysis. In particular, data from light detection and ranging (LIDAR) measurements are
questioning conventional methods of CPU-based algorithms due to their sheer size and com-
plexity as needed for decent accuracy. These data describing terrains are natively given as big
point clouds consisting of millions of independent coordinate locations from which meaningful
geometrical information content needs to be extracted. The method of computing the point
distribution tensor is a very promising approach, yielding good results to classify domains in a
point cloud according to local neighborhood information. However, an existing KD-Tree paral-
lel approach, provided by the VISH visualization framework, may very well take several days to
deliver meaningful results on a real-world dataset. Here we present an optimized version based
on uniform grids implemented in OpenCL that is able to deliver results of equal accuracy up
to 24 times faster on the same hardware. The OpenCL version is also able to benefit from a
heterogeneous environment and we analyzed and compared the performance on various CPU,
GPU and accelerator hardware platforms. Finally, aware of the heterogeneous computing trend,
we propose two low-complexity dynamic heuristics for the scheduling of independent dataset
fragments in multi-device heterogenous systems.

Keywords:

1 Introduction

Point datasets are present in many scientific domains. Smoothed particle hydrodynamics meth-
ods in astrophysics [4], echo sounding in engineering, 3D surface reconstruction [16] and urban
reconstruction [20] in graphics are typical examples where data generated by numerical sim-
ulations or observations are processed as point primitives. Today’s range-sensing devices are

Procedia Computer Science

Volume 51, 2015, Pages 160–169

ICCS 2015 International Conference On Computational Science

160 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

capable of producing highly detailed point datasets containing hundreds of millions of sam-
ple points. Light detection and ranging (LIDAR) technology, in particular, allows collecting
millions of data points e.g. from airborne scanners in order to produce high-resolution digital
elevation maps. However, depending on the application, large point datasets may require a
prohibitively high computational power for processing.

This paper is motivated by the LIDAR surveying application of shallow waters [7] where,
starting from a point dataset, a second order tensor field is computed and used as a basis for
several other algorithms such as point classification and geometry reconstruction [22]. A first
CPU-based parallel implementation of such a point distribution tensor was implemented in the
VISH visualization shell [5]. VISH is a productive framework that provides functionalities for
both efficient data processing and visualization of big data. However, as surveyed datasets grow
from several thousand of points to many millions of points, the tensor computation becomes a
bottleneck for data processing.

In this paper we focus on exploiting the computational power of emerging heterogeneous
computing systems in order to improve the tensor computation of massive datasets of millions
of points. Our study makes the following contributions: First, we implemented a new tensor
computation code in OpenCL using a uniform grid space partitioning approach, and evaluated
its performance against the current KD-Tree implementation available in VISH. Second, we
investigated the performance of the implemented code on 8 different devices, comprising four
GPUs, three CPUs and one accelerator, from desktop and server domains. Finally, we proposed
two low-complexity dynamic heuristics for the scheduling of independent dataset fragments
and compared them with three static scheduling heuristics in two multi-device heterogeneous
systems.

2 OpenCL Programming Model

OpenCL [14] is an open industry standard for programming heterogeneous systems composed
of devices with different capabilities such as CPUs, GPUs and other accelerators. The platform
model consists of a host connected to one or more compute devices. Each device logically con-
sists of one or more compute units (CUs) which are further divided into processing elements
(PEs). Within a program, the computation is expressed through the use of special functions,
called kernels, that are, for portability reasons, compiled at runtime by an OpenCL driver.
A kernel represents a data-parallel task and describes the computation performed by a single
thread, which is called work-item in OpenCL. During the program execution, based on an in-
dex space (N-Dimensional Range), a certain number of work-items are generated and executed
in parallel. The index space can also be subdivided into workgroups, each of them consist-
ing of many work-items. The exchange of data between the host and the compute devices is
implemented through memory buffers, which are passed as arguments to the kernel before its
execution. In the past few years, OpenCL has emerged as the de facto standard for heteroge-
neous computing, with the support of many vendors such as Adapteva, Altera, AMD, ARM,
Intel, Imagination Technologies, NVIDIA, Qualcomm, Vivante and Xilinx.

3 Tensor Computation

For a set of N points {Pi : i = 1, ..., N} the point distribution tensor S at the point Pi is defined
as:

S(Pi) =
1

N

N∑

k=1

ω(|tik|)(tik ⊗ tτik), (1)

Point Distribution Tensor Computation on Heterogeneous Systems I. Grasso

161

Figure 1: Input point distribution (left) and output tensor (right) of the river Rhein dataset. For the
input points, the height (z-axis) drives a colormap (left) while the output tensor is used for coloring
(planarity) and surface shading in VISH (right).

whereby ω(x) = θ(r − x) is a threshold function dependent on a radius r [22], tik = Pi − Pk,
τ is the transpose and ⊗ denotes the tensor product. A graphical result of the computation is
depicted in Figure 1.

The naive approach for the tensor computation is therefore to test every point with all the
others, leading to a quadratic algorithmic complexity. In real models composed of millions of
points this approach is not applicable due to the inherent performance problem. To mitigate
this problem spatial partitioning methods have been investigated [2, 25, 26].

KD-Tree Implementation. The tensor field computation algorithm, currently implemented
in VISH, makes use of a KD-Tree data structure to find the neighbors of a certain point. After
the tree building phase, in which the points of the dataset are inserted into the KD-Tree, the
computation of the tensor distribution is executed for each point with a series of range queries
dependent on a given search radius (threshold function). The computational loop over the points
was parallelized using OpenMP with dynamic scheduling and packets of 10000 loop iterations.
The KD-Tree code was integrated in a computational VISH module, and implemented via C++
templates and STL containers.

Uniform Grid OpenCL Implementation. A uniform grid space partitioning approach
involves a spatial partitioning of the model system into equally-sized boxes (cells) containing
different numbers of points. It is important to ensure that the grid box size is not smaller than
the radius size, as this would force the algorithm to check many surrounding grid boxes. On the
other hand, if the grid box is larger than the radius, each box would contain numerous points
and the process of locating neighbors would once again be checking many points outside the
radius area. In our case, the uniform grid approach is effective because the radius is an input
parameter of the program and therefore we are able to tune the grid box size accordingly.

We implemented the tensor computation application in OpenCL using a uniform grid space
partitioning approach. We used a grid with a cell size of two times the radius, which implies
that each point can only interact with points in the neighboring cells (27 in a 3D space). The
complete program, described in Algorithm 1, is composed of three phases: initialization, com-
putation and finalization. During the initialization phase, the OpenCL devices are initialized,
the OpenCL kernels are compiled and the metadata of the dataset is loaded. The metadata
contains information about the number of fragments present in the dataset, the number of
points for each fragment, plus other additional information useful for the graphical visualiza-
tion. The dataset consists of independent fragments of spatially ordered points to facilitate the

Point Distribution Tensor Computation on Heterogeneous Systems I. Grasso

162

Algorithm 1 The OpenCL tensor computation algorithm

1: devices initialization() � Initialization Phase
2: metadata← load dataset metadata()
3: for all fragments in dataset do � Computation Phase
4: pts ar ← load points data(fragment)
5: write points to device(pts ar)
6: create uniform grid(pts ar, radius){
7: hash ar ← compute hash values(pts ar)
8: index ar ← sort points indices(hash ar)
9: begin end ar ← compute interval(hash ar)

10: }
11: compute tensor(pts ar, index ar, begin end ar)
12: tsr ar ← read tensor from device()
13: write tensor to disk(tsr ar)
14: end for
15: devices finalization() � Finalization Phase

data manipulation and visualization. Each fragment contains a small percentage of replicated
data necessary for the computation of the tensor algorithm at points close to the border of
the fragment. Once the initialization phase is completed the system is ready to schedule the
fragments on the available devices and the computation phase will start.

For each fragment the point’s coordinates will be loaded in main memory and transferred to
the device memory where the computation will take place. On the device, the uniform grid will
be created and used during the tensor computation in the search for the neighboring points.
Once the computation is done, the computed tensor data is transferred back to the host’s main
memory and finally saved to the disk. The finalization phase releases all the devices and the
used memory.

The steps necessary for the creation of the uniform grid are described in Algorithm 1 (lines
6-10). The algorithm consists of multiple OpenCL kernels. The first kernel (line 7) calculates
a hash value for each point based on its cell ID and stores them in an array in device main
memory (hash ar). The array is then sorted based on the cell IDs while updating at the same
time the order of the point IDs. Sorting is performed using a bitonic algorithm. The result of
this computation is an array of point IDs sorted by cell (index ar). The last kernel (line 9) is
then executed to find the begin and the end position of any given cell. The kernel generates
an OpenCL work-item for each point and compares the cell ID of the current point with the
cell ID of the previous one in the hash ar array. If the two indices are different, the current
work-item ID is used as start index of the current cell and the begin end ar array is updated
using a scattered write operation. During the execution of the compute tensor kernel (line 11),
using the begin end ar and index ar arrays, we calculate the neighbor cells for each point in
the fragment and for each point present in the cells we compute the difference to the current
point in each dimension (x, y, z). If the length of the difference vector is less than the radius,
the tensor array and the points counter are updated. Finally, in the last step, each element of
the tensor array is divided by the points counter.

4 Scheduling Independent Fragments

As previously mentioned in Section 3, the tensor computation is applied on single fragments that
compose the complete dataset. The fragments are completely independent of each other and
can be computed in parallel using the available devices present in the system. During program

Point Distribution Tensor Computation on Heterogeneous Systems I. Grasso

163

execution a scheduler is responsible for the allocation of the fragments among the heterogeneous
devices. The scheduling problem has been extensively investigated and numerous methods have
been reported in the literature [6, 18, 17]. In our program we implement two low-complexity
scheduling heuristics: SimpleH and SimpleHS. SimpleH analyzes the dataset metadata and
sorts the list of fragments based on the number of points contained in each of them. The
algorithm then proceeds by dynamically assigning the fragment with the smallest number of
points to the slowest device and the fragment with the biggest number of points to the fastest
device. Following this pattern, the scheduler continues to dynamically assign fragments until
all of them are processed. SimpleHS follows a similar pattern. A fragment is assigned to the
slowest device, if the predicted execution time of the fragment on that device is lower than the
predicted execution time of all the remaining fragments on the fastest device. The execution
time for each fragment is predicted with a quadratic regression model using the number of points
of the fragment. During the program execution, information regarding number of points per
fragment and execution times are stored. These information will then be used to build a more
accurate model whenever the slowest device is ready to compute a new fragment. Although
for simplicity the heuristic algorithms are described taking into consideration only two devices,
they can be applied to heterogeneous systems composed of a single slow device (CPU) and
multiple equally fast devices (e.g. GPUs). In Section 6 we evaluate and compare SimpleH and
SimpleHS with three heuristics which are widely used to address the problem of scheduling
independent tasks in heterogeneous computing systems: Min-Min [13, 6], Max-Min [13, 6], and
Sufferage [19]. Because these are static heuristics, it is assumed that an accurate estimation
of the expected execution time for each fragment on each device is known prior to execution
and contained within an ETC (expected time to compute) matrix. The Min-Min heuristic
proceeds by assigning a previously unassigned fragment to a device in every iteration. The
assignment is decided based on a two-step procedure. In the first step, the algorithm computes
the minimum completion time (MCT) of each unassigned fragment over the devices in order
to find the best device which can complete the processing of that fragment at earliest time.
This decision is made taking into account the current loads of the devices and the execution
time of the fragment on each device. In the second step, the algorithm selects the fragment
with the minimum MCT among all unassigned fragments and assigns the fragment to its best
device found in the first step. The Max-Min heuristic differs from the Min-Min in the fragment
selection policy adopted in the second step of the fragment-to-device assignment procedure.
Unlike Min-Min, which selects the fragment with the minimum MCT, Max-Min selects the
fragment with the maximum MCT and then assigns it to the best device found in the first
step. Sufferage is also similar to Min-Min but adopts a different fragment selection policy. In
the first step of the process, the algorithm computes the second MCT value in addition to the
MCT value for each fragment. In the second step, the sufferage value, which is defined as the
difference between the MCT and the second MCT values of a fragment, is taken into account.
Sufferage selects the fragment with the largest sufferage and assigns it to the best device found
in the first step.

5 Experimental Environment

In order to evaluate the performance of the KD-Tree and OpenCL implementations presented
in Section 3, we use a dataset of 58 million points, generated using a combination of LIDAR
and echo sounding data captured at the river Rhein in Rheinfelden [7]. The dataset is stored in
the HDF5 [23] format, based on the scientific data format F5 [21, 3], to be easily manipulated
with the VISH infrastructure. The dataset is composed of 65 fragments that contain between
one thousand and 3.5 million points each.

Point Distribution Tensor Computation on Heterogeneous Systems I. Grasso

164

Device S9000 K20m Phi7120 2x E5-2690v2 2x Opt.6168 Radeon5870 GTX480 i7-2600K

OpenCL vendor AMD NVIDIA Intel Intel AMD AMD NVIDIA Intel

OpenCL version SDK v2.9 CUDA 6.5 SDK 2014 SDK 2014 SDK v2.9 SDK v2.9 CUDA 6.5 SDK 2014

Operating System CentOS6.5 CentOS6.5 CentOS6.5 CentOS6.5 CentOS6.5 CentOS5.9 CentOS5.9 Mint16

Host Connection PCIe 3.0 PCIe 3.0 PCIe 2.0 - - PCIe 2.0 PCIe 2.0 -

Type GPU GPU ACL CPU CPU GPU GPU CPU

Class server server server server server consumer consumer consumer

Compute Units 28 13 240 40 24 20 15 8

Max Workgroup 256 1024 8192 8192 1024 256 1024 8192

Clock (MHz) 900 705 1333 3000 1900 850 1401 3400

Images Yes Yes No Yes Yes Yes Yes Yes

Cache R/W R/W R/W R/W R/W None R/W R/W

Cache Line 64 128 64 64 64 - 128 64

Cache Size (KB) 16 208 256 256 64 - 240 256

Global Mem (MB) 3072 4799 11634 129006 64421 1024 1536 7965

Constant (KB) 64 64 128 128 64 64 64 128

Local Type Scratch Scratch Global Global Global Scratch Scratch Global

Local (KB) 32 48 32 32 32 32 48 32

Table 1: Benchmarked OpenCL devices

To represent the broad spectrum of OpenCL-capable hardware we selected eight devices,
comprising four GPUs, three CPUs, and one accelerator. Their device characteristics as re-
ported by OpenCL are summarized in Table 1. To exploit the computational capabilities of
heterogeneous machines, we evaluated different scheduling heuristics. The experiments were
performed on two different heterogeneous target architectures composed of three OpenCL de-
vices: two GPUs and one CPU. The first platform, mc1, consists of an Intel i7-2600K CPU and
two NVIDIA GTX 480, while the second, mc2, holds two Intel Xeon E5-2690 v2 CPUs (reported
as a single OpenCL device) and two AMD Fire Pro S9000 GPUs. For the static scheduling
heuristics we utilized, as estimation time for each fragment (ETC matrix), the actual time that
the fragment will take to be computed on the different devices. Differently, for the computation
of the coefficients in the SimpleHS heuristic, we used the multi-parameter fitting present in the
GNU Scientific Library.

All the benchmarked programs were compiled with GCC version 4.8.1 with the -O3 optimiza-
tion flag. In each different device, the OpenCL kernels were compiled by the respective vendor
compilers at runtime during the program initialization. All the experiments were conducted
on the previously described dataset. The measurements were collected for the computational
phase of the program, excluding the initialization and finalization phases. We repeated each
experiment 10 times and we computed the mean value and the standard deviation of the mea-
sured performance. In all the presented experiments, the standard deviation is negligible, thus
we do not report it.

6 Performance Analysis

KD-Tree and OpenCL Implementations. To compare the performance of the KD-Tree
version and our OpenCL implementation, we executed the tensor computation on the input
dataset on the same multi-core CPU (Intel i7-2600K). Both implementations are parallel: the
KD-Tree version uses OpenMP to parallelize the loop over all points, while the OpenCL ap-
proach is inherently parallel. The building phase of the tree in the KD-Tree implementation
is sequential, however, it represents a very small part of the overall run time. The OpenCL
version of the program experiences a significant speedup (24×) over the currently implemented
VISH KD-Tree version, reducing the execution time from 1 hour to 150 seconds. The perfor-
mance improvement comes from different reasons. First, grid data structures are more suited
for range queries (all the particles around a point in a given radius) while KD-Tree structures
are more suited for k-nearest neighbors queries (first N-points close to a given point). Second,
vectorization is rather hard in KD-Tree codes where many data-dependent branches are present.
In contrast, the uniform grid OpenCL code can be more easily autovectorized by compilers.

Point Distribution Tensor Computation on Heterogeneous Systems I. Grasso

165

Intel i7-2600K

AMD Opteron 6168

Intel Xeon E5-2690 v2

Intel Xeon Phi 7120

AMD Radeon 5870

Nvidia GTX 480

Nvidia K20m

AMD Fire Pro S9000

0 10 20 30 40 50 60 70 80 90 100

Write Build Compute Read

(a) Normalized execution time spent in the different
parts of the OpenCL tensor computation algorithm

Intel i7-2600K

AMD Opteron 6168

Intel Xeon E5-2690 v2

Intel Xeon Phi 7120

AMD Radeon 5870

Nvidia GTX 480

Nvidia K20m

AMD Fire Pro S9000

0 2 5 7 10 12 14 17 19 22 24

OpenCL version

(b) Speedup of the different devices over the Intel i7-
2600K

Figure 2: OpenCL Performance Analysis

Third, we applied a few code optimizations that improve the performance of the OpenCL code.
However, the optimizations only partially affect the speedup over the KD-Tree version, which
remains significant even in their absence (12.9×).

Heterogeneous Devices. Since OpenCL supports heterogeneous devices, we analyzed the
performance of our OpenCL code on a set of heterogeneous architectures described in Table 1.

Figure 2a depicts the percentage of execution time spent in the different phases of the
OpenCL tensor computation described in Algorithm 1. The blue color represents the transfer of
the fragment points to the device (line 5), the green color represents the time spent building the
uniform grid structure (line 6-10), the yellow color indicates the time spent in the computation
(line 11), while the red color identifies the transfer of the tensors to the host device (line 12).
In all the tested hardware the movement of data does not represent an important part of the
execution time. Write and Read functions are always under 5% of the total time. The only
exception is the AMD Fire Pro S9000 where the data transfers represent 9.0% and 11.6% of
the execution time, respectively. This is mainly due to the small amount of time spent in the
tensor computation thanks to the strong computational capabilities of the device.

In Figure 2b we present the performance comparison of the heterogeneous architectures.
The speedup of the CPUs respects the characteristics of the hardware. The AMD Opteron,
with a higher number of compute units but a lower clock rate, experiences a 1.6× speedup over
the Intel i7 while the Xeon, with 40 compute units and a similar clock rate, reaches a 4.5×
speedup. All the GPUs show significant improvements in performance compared to the Intel
i7. The desktop GPUs AMD Radeon 5870 and NVIDIA GTX 480 reach a speedup of 4.7× and
12.0×, respectively. The server GPUs NVIDIA K20m and AMD Fire Pro S9000, designed for
the HPC market, show a speedup of 14.5× and 23.8×, respectively. It is worth underlining that
although the NVIDIA K20 offers higher theoretical peak performance, in our test the AMD Fire
Pro S9000 is around 1.5 times faster. The only accelerator present in our test is the Intel Xeon
Phi. Although its peak performance is comparable with the tested server GPUs, it reaches only
a speedup of 4.4× compared to the Intel i7. The difference in performance between the GPUs
and the Xeon Phi is difficult to investigate as it derives from the differences in the architecture
and from the different maturity of the OpenCL toolchains.

In conclusion the results show that the problem is well-suited for massively parallel GPU
architectures, reducing the processing time of the complete input dataset to 6.3 seconds in case
of the AMD Fire Pro S9000.

Point Distribution Tensor Computation on Heterogeneous Systems I. Grasso

166

Device Scheduling Heuristics
C
o
n
su

m
e
r
P
la
tf
o
rm

Sufferage Min-Min Max-Min SimpleH SimpleHS

mc1-CPU1 5976.34 [15] 0.00 [0] 5980.55 [7] 6124.42 [21] 4807.08 [19]

mc1-GPU1 5971.16 [25] 5993.26 [32] 5988.02 [29] 5962.76 [23] 6014.41 [24]

mc1-GPU2 5974.84 [25] 6502.75 [33] 5988.23 [29] 5984.76 [21] 6049.29 [22]

Ex. time (ms) 5976.34 6502.75 5988.23 6124.42 6049.29

Norm. to Suff. 100.00% 91.90% 99.80% 97,58% 98.79%

S
e
rv

e
r
P
la
tf
o
rm

Sufferage Min-Min Max-Min SimpleH SimpleHS

mc2-CPU1 2708.42 [21] 1341.58 [7] 2711.67 [12] 2758.30 [28] 2758.30 [28]

mc2-GPU1 2706.41 [22] 2986.75 [29] 2710.42 [26] 2797.53 [20] 2797.53 [20]

mc2-GPU2 2709.77 [22] 2766.57 [29] 2712.34 [27] 2838.69 [17] 2838.69 [17]

Ex. time (ms) 2709.77 2986.75 2712.34 2838.69 2838.69

Norm. to Suff. 100.00% 90.73% 99.91% 95.45% 95.45%

Table 2: Performance of the different scheduling heuristics in two heterogeneous systems

Fragments Scheduling. As previously described in Section 4, we conducted a set of experi-
ments with scheduling heuristics in two heterogeneous machines. The objective of our scheduler
is to find a fragment-to-device assignment that minimizes the total execution time (makespan).
Table 2 shows, for each device in the two systems, the time spent to execute the number of
assigned fragments (in square brackets) for the particular scheduling policy. The table also
presents for each heuristic the makespan and the normalized result to the Sufferage heuristic.
In both systems Sufferage reaches an almost perfect load balancing between the three available
devices, fully utilizing the entire machines.

In both systems the static scheduling heuristics obtain similar results, with Max-Min that
reaches almost the same performance of Sufferage, while Min-Min shows 91.90% and 90.73%
of the performance, respectively. These results are justified by the structure of the dataset.
Usually, datasets collected with LIDAR technology contain few fragments with a big number of
points and many small fragments with fewer points. Due to the fragment selection policy, Suf-
ferage and Max-Min perform the assignment of the large fragments in early iterations resulting
in a better load balancing between the devices. Differently, Min-Min favors the assignment of
fragments with lower cost in early iterations, not reaching the same performance in terms of
makespan. It is noteworthy that the three static scheduling heuristics use a perfectly correct
estimated execution time for the fragments (ETC matrix) that will not be available at schedul-
ing time. The resulting performance of the heuristics is therefore only useful as a comparison
parameter for our low-complexity heuristics SimpleH and SimpleHS, which are only based on
information available at scheduling time. SimpleH, based on the assumption that the GPUs
devices are always faster than the CPU, dynamically assigns the fragments with more points
to the GPUs and the one with fewer points to the CPU. This simple mechanism facilitates the
devices load balancing by avoiding assigning large fragments to slow devices. Although SimpleH
is capable of reaching good performance, it also shows its weakness with our input dataset. The
heuristic does not take into account the number of remaining fragments to assign and, when few
are left, continues to distribute them to the CPU. This behavior can lead to load imbalance if
the GPUs have to wait for the CPU that received one of the last fragments. This issue is solved
with the SimpleHS heuristic, previously described in Section 4. SimpleHS tries to predict the
approximate execution time of a new fragment based on the execution time of the previous
ones. Although at the beginning the prediction error is high, it rapidly decreases during the

Point Distribution Tensor Computation on Heterogeneous Systems I. Grasso

167

scheduling of fragments. It is noteworthy that the overhead introduced by the prediction model
is negligible and does not impact the performance of the scheduler. In our tests, SimpleHS
is able to correctly predict when to stop the assignment of fragments to the CPU, obtaining
a better load balancing between the devices. As depicted in Table 2, SimpleHS, scheduling
less fragments to the CPU, always achieves better or equal performance compared to SimpleH,
reaching 98.79% and 95.45% of the Sufferage performance in the two systems.

These results validate the success of the proposed heuristics which, using only information
available at scheduling time, show comparable performance to more sophisticated methods
which require an accurate estimation of the expected execution times.

7 Related Work

The study of the interaction of millions of points, present in modern datasets, requires scal-
able systems capable of supporting the large computational demands. In order to actually
improve the scalability of such systems many spatial partitioning methods were proposed and
investigated [2, 25, 26]. Some of these approaches are suitable for simulations which frequently
have high density in one or several spatial locations and some perform best with uniformly
distributed points. In recent years, among such methods, uniform grid data structures have
received great attention from the research community. Erra et al.[8], leveraging the GPU pro-
cessing power, implemented an efficient framework which permits to simulate the collective
motion of high-density individual groups. Aaby et al. [1] presented the parallelization of agent-
based model simulations (ABMS) with millions of agents on multiple GPUs and multi-core
processors. Vigueras et al. [24] proposed different parallelization strategies for the collision
check procedure that takes place in agent-based simulations. Green [11] described how to im-
plement a simple particle system in CUDA using a uniform grid data structure. Husselmann
et al. [12] presented single- and multiple-GPU solutions for grid-boxing in multi-spatial-agent
simulations. While the uniform grid approach of these works is similar to ours, they are re-
stricted by the language of choice to some specific hardware. Differently, using OpenCL, our
work is not limited to a single platform and can be executed in multiple heterogeneous devices.
This advantage allows us to compare different platforms and fully exploit the computational
performance of heterogeneous systems as shown in other recent work [15].

8 Conclusions

This paper proposes an OpenCL implementation of the second order tensor field computation
of massive point datasets. Compared with an existing KD-Tree parallel approach which uses
OpenMP, our approach is 24× faster on an Intel i7-2600K. Since OpenCL supports heteroge-
neous devices, we investigated the performance of our implementation on a set of heterogeneous
architectures, showing a remarkable reduction of the execution time. Furthermore, aware of the
heterogeneous computing trend, we investigated different scheduling policies on two heteroge-
neous machines. The obtained results validate the success of the proposed SimpleHS heuristic,
which shows comparable performance to more complex static heuristics, only using informa-
tion available at scheduling time. In the future, we plan to extend our work to distributed
environment using the libWater library [10, 9].

9 Acknowledgment
This research has been supported by the FWF Austrian Science Fund as part of project I 1523
“Energy-Aware Autotuning for Scientific Applications” and by the FWF Doctoral School CIM
Computational Interdisciplinary Modelling under contract W01227.

Point Distribution Tensor Computation on Heterogeneous Systems I. Grasso

168

References

[1] Brandon G. Aaby, Kalyan S. Perumalla, and Sudip K. Seal. Efficient simulation of agent-based
models on multi-gpu and multi-core clusters. In SIMUTools, pages 29:1–29:10, 2010.

[2] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Nature, 324, 1986.

[3] W. Benger. Visualization of General Relativistic Tensor Fields via a Fiber Bundle Data Model.
PhD thesis, FU Berlin, 2004.

[4] W. Benger, M. Haider, J. Stoeckl, B. Cosenza, M. Ritter, D. Steinhauser, and H. Hoeller. Visu-
alization Methods for Numerical Astrophysics. 2012.

[5] W. Benger, G. Ritter, and R. Heinzl. The concepts of vish. In 4th High-End Visualization
Workshop, pages 26–39, 2007.

[6] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson,
M. D. Theys, B. Yao, D. A. Hensgen, and R. F. Freund. A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed computing systems. JPDC,
61(6):810–837, 2001.

[7] W. Dobler, R. Baran, F. Steinbacher, M. Ritter, M. Niederwieser, W. Benger, and M. Aufleger.
Die Zukunft der Gewässervermessung: Die Verknüpfung moderner und klassischer Ansätze: Air-
borne Hydromapping und Fächerecholotvermessung entlang der Rheins bei Rheinfelden. Wasser-
Wirtschaft, 9:18–25, 2013.

[8] U. Erra, B. Frola, V. Scarano, and I. Couzin. An efficient gpu implementation for large scale
individual-based simulation of collective behavior. In HIBI, pages 51–58, 2009.

[9] I. Grasso, S. Pellegrini, B. Cosenza, and T. Fahringer. libwater: Heterogeneous distributed com-
puting made easy. ICS, 2013.

[10] I. Grasso, S. Pellegrini, B. Cosenza, and T. Fahringer. A uniform approach for programming
distributed heterogeneous computing systems. JPDC, 74(12):3228–3239, 2014.

[11] S. Green. Particle simulation using cuda. NVIDIA Whitepaper, 2010.

[12] A. V. Husselmann and K. A. Hawick. Spatial data structures, sorting and gpu parallelism for
situated-agent simulation and visualisation. In MSV, pages 14–20, 2012.

[13] O. H. Ibarra and C. E. Kim. Heuristic algorithms for scheduling independent tasks on nonidentical
processors. J. ACM, 24(2):280–289, 1977.

[14] Khronos OpenCL Working Group. The OpenCL 2.0 specification, 2013.

[15] K. Kofler, I. Grasso, B. Cosenza, and T. Fahringer. An automatic input-sensitive approach for
heterogeneous task partitioning. In ICS, 2013.

[16] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson,
J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital michelangelo project: 3d scanning of
large statues. SIGGRAPH, pages 131–144, 2000.

[17] C. Liu and S. Baskiyar. A general distributed scalable grid scheduler for independent tasks. JPDC,
69(3):307–314, 2009.

[18] P. Luo, K. Lü, and Z. Shi. A revisit of fast greedy heuristics for mapping a class of independent
tasks onto heterogeneous computing systems. JPDC, 67(6):695–714, 2007.

[19] M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and R. F. Freund. Dynamic mapping of a
class of independent tasks onto heterogeneous computing systems. JPDC, 59(2):107–131, 1999.

[20] P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. van Gool, and W. Purgathofer. A survey
of urban reconstruction. In EUROGRAPHICS 2012 State of the Art Reports, pages 1–28, 2012.

[21] M. Ritter. Introduction to HDF5 and F5. Technical Report CCT-TR-2009-13, Center for Com-
putation and Technology, Louisiana State University, 2009.

[22] M. Ritter and W. Benger. Reconstructing Power Cables From LIDAR Data Using Eigenvector
Streamlines of the Point Distribution Tensor Field. In Journal of WSCG, pages 223–230, 2012.

[23] The HDF Group. HDF5 - Homepage. http://www.hdfgroup.org/HDF5, 2014.

[24] G. Vigueras, J. M. Orduña, M. Lozano, J. M. Cecilia, and J. M. Garćıa. Accelerating collision
detection for large-scale crowd simulation on multi-core and many-core architectures. Int. J. High
Perform. Comput. Appl., 2014.

[25] M. S. Warren and J. K. Salmon. Astrophysical n-body simulations using hierarchical tree data
structures. In ACM/IEEE Conference on Supercomputing, pages 570–576, 1992.

[26] M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body algorithm. In ACM/IEEE
Conference on Supercomputing, pages 12–21, 1993.

Point Distribution Tensor Computation on Heterogeneous Systems I. Grasso

169

SIGRAD 2014
M. Obaid, D. Sjölie, E. Sintorn and M. Fjeld (Editors)

Using Curvilinear Grids to Redistribute Cluster Cells for
Large Point Clouds

D. Schiffner1, M. Ritter 2,3, D. Steinhauser 3 and W. Benger 2

1Professur für Graphische Datenverarbeitung, Goethe Universität Frankfurt, Germany
2AirborneHydroMapping GmbH, Technikerstr 21a, Innsbruck, Austria

3Universität Innsbruck, Technikerstr 13/25, Innsbruck, Austria

Abstract
Clustering data is a standard tool to reduce large data sets enabling real-time rendering. When applying a grid
based clustering, one cell of a chosen grid becomes the representative for a cluster cell. Starting from a uniform
grid in a projective coordinate system, we investigate a redistribution of points from and to neighboring cells. By
utilizing this redistribution, the grid becomes implicitly curvilinear, adapting to the point cloud’s inhomogeneous
geometry. Additionally to pure point locations, we enabled data fields to influence the clustering behaviour. The
algorithm was implemented as a CPU and a GPU code. The GPU implementation uses GLSL compute shaders
for fast evaluation and directly manipulates the data on the graphics hardware, which reduces memory transfers.
Data sets stemming from engineering and astrophysical applications were used for benchmarking. Different pa-
rameters dependent on the geometric properties were investigated and performance was measured. The method
turned out to reach interactivity for medium sized point clouds and still good performance for large point clouds.
The grid based approach is fast, while being able to adapt to the point cloud geometry.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometry transformations

1. Introduction

Large point cloud data sets are produced by observations
and simulations. Today, laser light detection and ranging (Li-
DAR) applications easily generate several billions of points
measurements [PMOK14, OGW∗13], similar amounts of
particle based data are generated by state-of-the-art astro-
physical simulations, i.e. by smooth particle hydrodynamic
codes [SWJ∗05, Spr05]. Interactive rendering of data be-
comes important, i.e., when semi-automated algorithms are
applied. The classification of LiDAR data, e.g., requires a
quality check and ’hand-made’ corrections done by users.
Here, interactive response and rendering is important for an
efficient work-flow. Such large amounts of geometry data
do not fit into the graphic hardware’s (GPU’s) memory as
they easily reach hundreds of giga-bytes. Thus, data has to
be prepared to support out-of-core rendering, for example in
spatially sorted data fragments. But, more geometry data can
be loaded onto the GPU’s memory than the GPU can display
at interactive frame rates.

Here, our approach aims at geometry reduction on the

GPU to still achieve interactive frame rates per out-of-core
data fragment. We want to avoid any additional data pre-
processing, but can enhance the reduction when using pre-
generated information. We cluster the incoming vertices to
reduce the amount of data being displayed by creating an im-
plicit curvilinear grid originating from an affine transformed
uniform grid. The cluster process consists of two steps: a
grid cluster operation and a move operation. The cluster op-
eration is simple as it operates on an initial uniform grid. The
move operation uses accumulated information from the first
step and processes indices only. This allows a fine grained
control over individual cells and their number of contained
vertices enabling to manipulate the details of the rendered
data while not needing to preserve it for further processing.
In the context of out-of-core rendering and big data sets, this
becomes ever increasing in importance.

Our method aims to be:

fast. Utilization of the GPU and preparing the clusters via
GLSL compute shaders to reduce memory transfers and
unleash parallelism available in standard workstations.

9

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

simple. Data organization is linear and no hierarchical data
structure is required. It is directly used for rendering.

flexible. Besides the vertices, additional data fields such as
scalar, vector, or tensor fields, may be taken into account
for clustering. The method can be combined with a coarse
Level of Detail technique on out-of-core data fragments.

versatile. Since the grid is being adjusted to the point
clouds’s geometry, the method is applicable to different
kinds of data. The approach makes no assumption on how
the point cloud originated or if it represents a specific
kind of geometry. The points may or may not describe
lines, surfaces, volumes, or other geometrical distribu-
tions, available at many time steps or just at one.

We chose application motivated data sets to do bench-
marks. We study different parameters of the approach and
the influence of data set properties on the performance and
the applicability.

After having provided some background information, we
gather related and previous work in section 2. The approach
is described in-depth in section 3. Data sets stemming from
LiDAR and from astrophysical particle simulations, see sec-
tion 4, are the basis for benchmarks in section 5. Here, the
main results regarding to timing and visualization are pre-
sented and discussed. The article is concluded in section 6,
and closes with thoughts on future work in section 7.

2. Related and Previous Work

The application of vertex clustering recently has grown in in-
terest due to its fast processing capabilities. Linear methods,
such as grid based clustering methods, are especially well
suited for large data sets that may contain several million or
even billion data points. By reducing the input set, such as
presented by DeCoro [DT07] or Willmot [Wil11], the ren-
dering of large data is possible again with a little overhead at
the initial clustering phase. In the latter case, individual at-
tributes of an input data set are stored separately to increase
detail after reduction.

Promising results have also been achieved by Peng and
Cao [PC12], as they are able to provide frame-to-frame
coherence when applying their reduction method. Their
method is based on an edge collapse algorithm, which was
presented by Garland and Heckbert [GH98]. They apply the
computation of the quadric error metric in parallel and then
decide where to reduce and restructure the output triangles.

The selection of individual level of details is also a cru-
cial part and often includes offline processing methods. In
[SK12] we used a parallel approach to dynamically update
the current representation while retaining interactivity. This
could be done by computing a raw estimate of the object that
is being iteratively refined.

An comparison of two clustering algorithms has been pre-
sented by [PGK02]. In this case, a hierarchical and an in-

Figure 1: Points are transformed into a local coordinate sys-
tem of the camera view frustum. Initial cells are defined by
a uniform grid. The clustering algorithm operates in this co-
ordinate system. The grid’s geometry preserves more detail
close to the camera and reduces detail far way.

cremental clustering method are applied to reduce point-set-
surfaces [ABCO∗01], where cells were iteratively refined.
Both approaches showed good results regarding reduction
quality and run-time performance. Clustering especially in
the context of SPH data sets has been utilized by [FAW10]
with a perspective grid. They include a hierarchy (octree) in
the data organization and apply texture based volume render-
ing in front to back order of the perspective grid for drawing.

[PGK02] use a covariance technique in the point neigh-
borhood to compute a reconstructed ’surface normal’ and to
measure a distance from a cluster point to the original sur-
face. A similar method based on the same dyadic product,
called the point distribution tensor, was introduced in our
previous work [RB12]. However, the product also includes
distance weighting functions and the analysis based on the
tensor’s Eigenvalues is different. Three scalar fields are de-
rived from the second order tensor called linearity, planarity,
and sphericity. These describe the geometric point neighbor-
hood and are normalized between 0 and 1. If points are dis-
tributed on a straight line, linearity is high, and if points are
distributed on a plane planarity is high, respectively. We pre-
computed the planarity for some of the data sets used in the
benchmarks and include it in the clustering process, such
that variations in planarity are preserved and homogeneous
planar regions are clustered.

3. Our Approach

The main idea behind our approach is to re-size individual
cells based on their internal data. The less points contribute
to an individual cell, the better the quality once a reduction
is applied. This applies, as long as the representative is being
computed using the values taken from a single cell.

The most basic scenario for shrinking a cell is that it con-
tains more points than their neighbors. This can be achieved
by reducing the cell extents. Note, that this reshaping does
not alter the actual data but is only used internally to derive
a new cell. More elaborate results can be achieved, by using

10

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

(a) SmallRiver (b) GasTank

(c) FormingStars (d) RiverDam

Figure 3: Four point cloud data sets were used for testing. Different sizes and different geometrical distributions are bench-
marked. The points in the LiDAR data sets are mainly distributed on surfaces with small volumetric regions in vegetation and
water. The point density varies relatively little over the whole data set. The SPH simulation of forming stars is fully volumetric
and has small regions of much higher point densities.

Name Nr. of Points Scalar Field
SmallRiver 2.075.993 Planarity
GasTanks 11.133.482 Planarity
FormingStars 16.250.000 Type / Density
RiverDam 26.212.555 Planarity

Table 1: Data set sizes used for the benchmarks.

4. Data Sets

We use data sets stemming from LiDAR measurements and
an astrophysical particle simulation to test our algorithm, see
Figure 3. Table 1 lists the data sets, its sizes, and an available
scalar field on the points.

LiDAR: For the LiDAR data three airborne scans with in-
creasing complexity were chosen. The data was captured
with a green laser system by Riegl, the VQ820g, specialized
for bathymetric scanning. The laser system has an especially
high pulse rate of up to 520 kHz and a wide footprint op-
timized for capturing shallow water regions. The RiverDam
data set was enriched by additional sonar measurements and,
thus, includes ground echos of the deeper (>3m) river sec-
tions, besides the shallow water regions of the fish ladder
(<3m) [DBS∗13]. Such high density bathymetric laser scans
are used for hydraulic engineering, planing water related

building structures, and environmental engineering. Grids
for numerical hydraulic computations can be generated, e.g.,
for flooding simulations or morphological studies. To gener-
ate such grids from a point cloud several processing steps
are required. Points are filtered and geo-referenced. Then,
they are classified into, at least, the two classes: water and
non-water points. Next, the water surface is extracted and
non-water points are corrected to eliminate the effect of the
water’s refraction. Especially, the step of classification needs
control and corrections by human users to support automatic
algorithms. For all the LiDAR data sets the planarity was
pre-computed, an attribute given per point, describing a geo-
metrical property of the surrounding neighborhood [RB12].
It was computed via a the point distribution tensor and de-
scribes how closely points are distributed towards a fitting
plane in the neighborhood. The radius of the neighborhood
was set to 2 meters.

Astrophysics: The FormingStars data set represents one
time step of a combined N-Body/Hydrodynamic simulation
of a galaxy undergoing ram-pressure stripping [SHKS12].
Such simulations are performed in order to understand the
evolution of galaxies in dense environments in the universe.
In galaxy clusters, the largest gravitationally bound struc-
tures in the universe, galaxies move in their mutual grav-
itational field. Besides the galaxies and dark-matter, such
clusters consist of a very hot and thin gas, the intra-cluster

12

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

medium (ICM). The galaxies are encountering this gas and
feel its ram pressure, nonetheless it is very thin. This in-
duces enhanced star formation within the galaxy at first, and
leads to the stripping of the inter-stellar medium (ISM), the
gas within a galaxy, reservoir for forming new stars. As a
consequence, star formation in the galaxy ceases, but stars
can be formed from stripped gas in the wake of the galaxy.
The mass distribution of different components in GADGET-
2 [Spr05] (gas(type 0), dark-matter(1), old stars(2), bulge
stars(3), newly formed stars(4)) is discretized and sampled
using a Monte Carlo method. Except gas, all other types of
matter are then modeled as a collision-less fluid, interact-
ing only via gravity. To solve the resulting N-Body prob-
lem, a tree code is used (e.g. [BH86]). The hydrodynamic
equations for the gaseous component are solved via SPH
(smoothed particle hydrodynamics [Mon92]). Initially, the
density estimate of each particle is calculated using a kernel
interpolation technique. Consequently, the momentum and
thermal energy equation can be integrated in time, the conti-
nuity equation is implicitly fulfilled.

The points of the LiDAR data sets reside mostly on sur-
faces, such as measured ground or building structures. Only
a few points captured in vegetation and water regions rep-
resent volumes. However, in the star forming simulation the
points describe a volume. We want our algorithm to perform
well in all cases and want to investigate its behaviour. All
data sets still fit into 1GB of GPU memory, but only the
smaller ones can be displayed at interactive frame rates.

5. Results

To create test results, we have implemented our approach
with OpenGL using compute shader capabilities that are
available since version 4.3. We did not use an OpenCL ap-
proach, as the data is going to be rendered directly after the
processing. This way, we can directly control the outcome
of the cluster algorithm when altering the individual param-
eters.

In the core specification, no floating point atomic opera-
tions are specified but can be added by using an extension
from nVidia. When using other vendors, one could emulate
this feature, by converting the float value to an integer. For
further details, the reader may be referred to [CCSG12].

As our approach consists of two steps, we can simply omit
the second one (and the additional computations) to allow an
evaluation of the overhead generated by our additional move
operation. Thus, this algorithm applies a basic clustering to
the input data set.

A CPU implementation has been realized for sake of com-
pleteness. Obviously, the CPU variant will not be able to
compete with the GPU implementation.

As stated before, we want to avoid any pre-computations,
e.g. computation of tensors or connectivity, on the available

data sets. The algorithm is able to perform a reduction with-
out planarity information, but can produce better results with
them.

5.1. Timing

Based on our applications, several benchmarks have been
conducted. They vary in terms of input size, grid size and
used graphics card. In general, a test has been repeated 10
times and the mean time values are given. Timings are re-
ported in milliseconds. Each test was run with varying input
parameters, i.e. the object and the grid size. These bench-
marks were executed on 3 different PC’s, running on Win-
dows 7 and Linux. The results are listed in table 2. The first
machine (1) consists of an i5-3450 and a nVidia GeForce
GTX 460 with 1GB RAM. The second system (2) uses an
i5-670 and a nVidia GeForce 680 GTX. The last configura-
tion (3) contains an Intel Xeon-X5650 and a nVidia Quadro
5000. (1) and (2) operate on a MS-Windows platform while
(3) runs a Linux system.

Model Sys Our[ms] Cluster[ms] CPU[ms]
SmallRiver 1 68.9 49.7 700.0

2 14.6 10.2 831.0
3 93.9 52.0 879.0

GasTanks 1 298.1 239.5 3780.0
2 65.4 34.8 4445.4
3 480.0 256.5 4758.5

FormingStars 1 648.8 479.9 5751.0
2 129.8 88.6 6858.3
3 749.0 434.4 7146.2

RiverDam 1 950.3 671.5 8670.0
2 206.7 146.7 10292.0
3 1228.6 719.9 11062.7

Table 2: Benchmark results of our GPU algorithm, a basic
cluster approach and a CPU implementation. All shown tests
have been performed with a grid size of 75x75x15. This grid
was chosen due to the planar point distribution.

The individual timings indicate an overhead due to the ad-
ditional processing step of our approach. Yet, we only have
an increase of roughly 50% despite the additional computa-
tions performed in the move operation. Note that our com-
pute shader has not been optimized and leaves room for fur-
ther improvements. A visualization of the presented timings
using a different grid size can be seen in Figure 4.

The influence of the grid size is in all computation steps
very small. This is due to the fact that the individual steps
mostly depend on the data input size, while only the last step
scales with the size of the grid. As one can see in Figure 5,
the GeForce 680 outperforms the older graphics cards.

5.2. Visual Results

The visualization technique in the OpenGL demo simply
draws equally sized non-transparent splats. Color is con-

13

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

0

200

400

600

800

1000

1200

1400

10,000,000 20,000,000 30,000,000

T
im

e
 [

m
s
]

Number of Points

GTX 460
GTX 680

Quadro 5000

Figure 4: Timing values generated by processing each object
repeatedly. The reported values are the mean of all runs. For
all objects, a grid size of 200x200x100 has been used.

0

100

200

300

400

500

600

75x75x15 150x150x50 200x200x100 250x250x150

T
im

e
 [

m
s
]

Grid Size (X x Y x Z)

GTX 460
GTX 680

Quadro 5000

Figure 5: The influence of the grid size on the overall perfor-
mance of our algorithm. The GeForce 680 GTX outperforms
the other graphics cards. The Quadro, despite its larger mem-
ory, is not able to compete with the GeForce 460 GTX. We
used the GasTank data set for computation.

trolled by a scalar value via a red to green color map. As pre-
sented in section 5.1, the impact of the additional move-step
is acceptable, as the computation times are within interactive
response times. The following Figures show several images
that were created with both the curvilinear and a classic clus-
ter algorithm with different grid sizes. The color map either
illustrates changes based on the relative movement from the
cells or the cluster cell density.

In Figure 6 some results generated with our method are
shown. We used the prior mentioned data sets to apply a
clustering. The colors indicate the density of the represented
cell. The more red-ish the color, the more data points have
been collected in this cell.

Especially with larger grid sizes, the reduction quality is
increasing. In Figure 7, the cell density of each step is used
for the color mapping. After application of the move opera-

Figure 8: GasTank data set visualized clustered on a perspec-
tive grid. Top: move operation based on cell densities only.
Bottom: move operation including the scalar field planarity
which was computed in a pre-processing step. Smaller cells
are created in regions of low planarity (e.g. edges) and, thus,
preserving more detail. Dense cells are created in regions of
homogeneous planar regions, were less detailed information
is necessary for a good visual representation. Geometric fea-
tures of the point cloud are enhanced, when taking the pla-
narity into account.

tion, the global average is reduced, which results in the red
color, as the same maximum is used for the mapping. The
lower image visualizes the differences regarding the addi-
tional move operation. The curvilinear grid matches the un-
derlying source more closely, as can be seen via the cluttered
splats at the top right of the image.

By introducing precomputed information, our algorithm
can perform even better. As one can see in Figure 8, re-
gions where edges are present are better fitted as smaller
cells are used. This is indicated by the more distinct color
values present in the individual cells, e.g. it the lower right
of the image.

6. Conclusion

We have presented a new approach to apply a non-linear
clustering to arbitrary objects. We are able to use multi-
ple information from the current geometry and are not lim-
ited to scalar field properties. The applied reduction is made
selectively, due to a restructuring of individual cells. Cur-
rently, our data sets are point based and do not incorporate
connectivity information. However, an extension to triangles
or polygons can easily be achieved, as shown by other re-
searchers ([PC12, Wil11]).

The computation times of the move operation has been
shown to be interactive for medium sized point clouds and
has a good performance with large data sets. Our implemen-
tation has not been optimized and leaves room for further
enhancements. For example, the calculation of cluster in-
dices is performed in both the cluster and the move opera-
tion, which is not necessary.

We have shown the differences between classical cluster-

14

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

(a) SmallRiver (b) GasTank

(c) FormingStars (d) RiverDam

Figure 6: Visual results of the clustering for the different data sets. Color represents the cell density. The number of points per
cell is illustrated by a green to red color map going from many (red) to one (green) point. Grid size varies from 150×150×25
to 300× 300× 100 in (a), (b), and (d), which yield good results for reduced overview visualizations. In (c) the grid resolution
in z-direction was reduced to 5 slices allowing to see inside the volume. When inspecting the leftmost slice one can see how
the representing points are pulled toward the high point density region of the galaxy, thus emphasizing a region of interest. The
simple non-transparent splat rendering prevents better insights into the volume.

Figure 7: The differences due to the application of the proposed method. In the first picture of the top row, the green-ish regions
indicate cells with high density. These are reduced by rescaling the cell sizes, which results in a more even distribution, as
seen on the right top. The image below shows a detailed view, where and how the move operation modifies the positions of the
resulting cells. The yellow cells are created by the clustering while blue ones are the result with the additional move operation.
Note that the latter produces a splat at the tree in the top of the image.

15

D. Schiffner & M. Ritter & D. Steinhauser & W. Benger / Using Curvilinear Grids to Redistribute Cluster Cells for Large Point Clouds

ing and our curvilinear implementation. Due to the dynamic
cells, details in an object are more likely to be preserved.
This preservation of features during a rendering increases
the quality and topology of the basic object, while still re-
ducing the input data set. Thus, we have made another step
towards interactive rendering of large, unprocessed data sets.

7. Future Work

The high performance of the compute shader drives us to
further investigate streaming of big data. This includes a fast
discard of unnecessary data, as well as selective reloading
of individual fragments of a rendered object. Especially, the
efficiency of the move allows repetitive execution (more it-
erations) or more complex grid modifications. We intent to
use several reconstruction methods to enable the visualiza-
tion of closed surfaces as well as available geometric prop-
erties, such as the point distribution tensor or the planarity.
This will allow an identification of interesting regions within
the large scale object. Tensor analysis may also be computed
on the fly on the GPU.

The visualization can be enhanced by displaying the in-
dividual cell sizes. This way, a user could visually control,
whether the implicitly generated curvilinear grid matches
the expectations. Also, the information within a cluster cell
could be visualized showing the influence of the available
parameters to the effectively computed grid.

We also want to investigate, whether we could use the
fast approximation to create a fingerprinting of these large
data sets. To compare large data sets for equality, the accu-
mulated information could be used instead of the raw data.
However, it remains to be shown, if the generated data is
unique enough for a clear identification.

8. Acknowledgments

This work was supported by the Austrian Ministry of Sci-
ence BMWF as part of the Konjunkturpaket II of the Focal
Point Scientific Computing at the University of Innsbruck
and as part of the UniInfrastrukturprogramm of the Research
Platform Scientific Computing at the University of Inns-
bruck and funded by the Austrian Science Fund (FWF) DK+
project Computational Interdisciplinary Modeling, W1227-
N16. We like to thank Frank Steinbacher [ahm] to provide
the LiDAR data sets.

References

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN
S., LEVIN D., SILVA C. T.: Point Set Surfaces. In IEEE Vi-
sualization (2001), Ertl T., Joy K. I., Varshney A., (Eds.), IEEE
Computer Society.

[ahm] http://ahm.co.at.

[BH86] BARNES J., HUT P.: A hierarchical 0 (N log iV) force-
calculation algorithm. Nature (1986).

[CCSG12] CYRIL CRASSIN, SIMON GREEN: Octree-Based
Sparse Voxelization Using the GPU Hardware Rasterizer. In
OpenGL Insights, Cozzi P., Riccio C., (Eds.). CRC Press,
July 2012, pp. 303–319. http://www.openglinsights.
com/.

[DBS∗13] DOBLER W., BARAN R., STEINBACHER F., RITTER
M., NIEDERWIESER M., BENGER W., AUFLEGER M.: Die
Zukunft der Gewässervermessung: Die Verknüpfung moderner
und klassischer Ansätze: Airborne Hydromapping und Fächere-
cholotvermessung entlang der Rheins bei Rheinfelden. Wasser-
Wirtschaft 9 (2013), 18–25.

[DT07] DECORO C., TATARCHUK N.: Real-time Mesh Simpli-
fication Using the GPU. In Proceedings of the 2007 Symposium
on Interactive 3D Graphics and Games (New York, NY, USA,
2007), I3D ’07, ACM, pp. 161–166.

[FAW10] FRAEDRICH R., AUER S., WESTERMANN R.: Effi-
cient High-Quality Volume Rendering of SPH Data. IEEE Trans-
actions on Visualization and Computer Graphics (Proceedings
Visualization / Information Visualization 2010) 16, 6 (November-
December 2010), to appear.

[GH98] GARLAND M., HECKBERT P. S.: Simplifying surfaces
with color and texture using quadric error metrics. In IEEE Visu-
alization (1998), pp. 263–269.

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Annual review of astronomy and astrophys. 30 (1992), 543–574.

[OGW∗13] OTEPKA J., GHUFFAR S., WALDHAUSER C.,
HOCHREITER R., PFEIFER N.: Georeferenced Point Clouds:
A Survey of Features and Point Cloud Management. ISPRS In-
ternational Journal of Geo-Information 2, 4 (2013), 1038–1065.

[PC12] PENG C., CAO Y.: A GPU-based Approach for Mas-
sive Model Rendering with Frame-to-Frame Coherence. Comp.
Graph. Forum 31, 2pt2 (May 2012), 393–402.

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Efficient Sim-
plification of Point-sampled Surfaces. In Proceedings of the Con-
ference on Visualization ’02 (Washington, DC, USA, 2002), VIS
’02, IEEE Computer Society, pp. 163–170.

[PMOK14] PFEIFER N., MANDLBURGER G., OTEPKA J.,
KAREL W.: OPALS - A framework for Airborne Laser Scan-
ning data analysis. Computers, Environment and Urban Systems
45, 0 (2014), 125 – 136.

[RB12] RITTER M., BENGER W.: Reconstructing Power Cables
From LIDAR Data Using Eigenvector Streamlines of the Point
Distribution Tensor Field. Journal of WSCG 20, 3 (2012), 223–
230.

[SHKS12] STEINHAUSER D., HAIDER M., KAPFERER W.,
SCHINDLER S.: Galaxies undergoing ram-pressure stripping: the
influence of the bulge on morphology and star formation rate. As-
tronomy & Astrophysics 544 (July 2012), A54.

[SK12] SCHIFFNER D., KRÖMKER D.: Parallel treecut-
manipulation for interactive level of detail selection. In 20th In-
ternational Conference in Central Europe on Computer Graph-
ics, Visualization and Computer Vision (2012), vol. 20.

[Spr05] SPRINGEL V.: The cosmological simulation code gadget-
2. Monthly Notices of the Royal Astronomical Society 364, 4
(Dec. 2005), 1105–1134.

[SWJ∗05] SPRINGEL V., WHITE S. D. M., JENKINS A., FRENK
C. S., YOSHIDA N., GAO L., NAVARRO J., THACKER R., CRO-
TON D., HELLY J., PEACOCK J. A., COLE S., THOMAS P.,
COUCHMAN H., EVRARD A., COLBERG J., PEARCE F.: Sim-
ulating the Joint Evolution of Quasars, Galaxies and their Large-
scale Distribution. Nature (2005).

[Wil11] WILLMOTT A.: Rapid Simplification of Multi-Attribute
Meshes. In High-Performance Graphics 2011 (August 2011).

16

Fast Normal Approximation of Point Clouds in Screen
Space

Daniel Schiffner
Goethe Universität

Robert-Mayer-Strasse 10
D-60054 Frankfurt

dschiffner@gdv.cs.uni-
frankfurt.de

Marcel Ritter
University of Innsbruck &

Airborne Hydromapping OG
Technikerstr. 13a & 21

A-6020, Innsbruck, Austria
marcel.ritter@uibk.ac.at

Werner Benger
Center for Computation and

Technology,
Louisiana State University

216 Johnston Hall
LA 70803, Baton Rouge, USA

werner@cct.lsu.edu

ABSTRACT
Displaying large point clouds of mainly planar point distributions yet comes with large restrictions regarding
the surface normal and surface reconstruction. Point data needs to be clustered or traversed to extract a local
neighborhood which is necessary to retrieve surface information. We propose using the rendering pipeline to
circumvent a pre-computation of the neighborhood in world space to perform a fast approximation of the surface
in screen space. We present and compare three different methods for surface reconstruction within a post-process.
These methods range from simple approximations to the definition of a tensor surface. All these methods are
designed to run at interactive frame-rates. We also present a correction method to increase reconstruction quality,
while preserving interactive frame-rates. Our results indicate, that the on-the-fly computation of surface normals
is not a limiting factor on modern GPUs. As the surface information is generated during the post-process, only the
target display size is the limiting factor. The performance is independent of the point cloud’s size.

Keywords
Normal Reconstruction, Tensor Information, GPU, Point Clouds

1 INTRODUCTION

Huge data sets are nowadays generated by simulations
or by observational methods. Point clouds are e.g. the
result of particle based simulation codes or laser scans,
such as airborne light detection and ranging (LIDAR)
scanning. Surface related information, such as the sur-
face normal, can be used to enhance the visualization
of point clouds, e.g. for illumination. Traditional meth-
ods for reconstruction surface information require an
expensive spatial sort operation. Therefore, these are
executed during a pre-process. Our method aims at im-
proving the exploration of LIDAR data sets, before ap-
plying more expensive approaches.

In our work, we use the large data throughput of modern
GPUs to generate a fast estimation of the surface prop-
erties within screen space. Therefore, we apply three
possible approaches and compare the individual results.
The first approach uses the fragment shader specific

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

dFdx and dFdy functions. The second method calcu-
lates the surface normal by computing the cross product
in a local neighborhood, which is available through the
pixel neighborhood. The third applies a moving-least-
squares approach to acquire tensor information. The re-
sulting co-variance matrix is then used to compute the
eigenvalues and eigenvectors.

In the next section, we list similar methods to our ap-
proach. Then, we present our methods and solutions
to encountered issues. These methods are compared to
each other and some examples are presented. Finally,
we conclude with a summary of our findings and an
outlook regarding future work.

2 RELATED WORK
Generic visualization frameworks, such as openWal-
nut [Walnut] or the visualization shell (VISH) are uti-
lized for data exploration and processing of a large data
sets. More expensive approaches to compute visual en-
hancements of points distributed on surfaces and lines,
and geometrical reconstructions of lines have been done
in [Bou212], [Rit12b] or [Rit12a].

The calculation of a surface normal is strongly
connected to any surface reconstruction method.
Especially for point based representations, methods
using co-variance techniques [Ber94][Bjö05] are well

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 21 ISBN 978-80-86943-75-6

suited, because no exact neighborhood is available
and some noise is to be expected. Alexa defined
the so-called point-set surfaces and presented some
projection specific calculations [Ale04]. The co-
variance matrix allows to assess the quality of the point
cloud data set using direct tensor field visualization
methods, such as displaying tensor splats [Ben04]. To
compute the eigenvalues and eigenvectors from a given
co-variance matrix, the analytical approach presented
by Hasan [Has01] or one of the methods presented by
Kopp [Kop06] can be applied.

Yet, these methods rely on the identification of an ac-
curate neighborhood. To acquire this information, the
input data set needs to be sorted. Neighbors are ei-
ther found by a brute force approach – which is not
suitable at all –, by a tree search or by a Morton or-
dering [Con10]. A tree as well as a Morton order are
highly suited for parallelization.

Instead of creating a kd-tree or a Morton order in
world space, a neighborhood can also be computed in
screen space. Thus, the computation is only performed
on the currently visible part of the data set. This
is commonly done by splatting the data points and
extracting the properties from the frame buffer. Similar
to the approach presented by [Sch11] or [Yan06],
we use only screen space information for th selection
of the neighborhood. The splats are projected using
either a fixed or adapted point size, as proposed by
Rusinkiewicz [Rus00]. Once the surface information is
available, also high quality splatting techniques [Bot05]
could be applied.

3 APPROACH
We use the information available in screen space to
reconstruct a surface and its corresponding normals.
We designed an approach consisting of three individual
steps, as illustrated in figure 1.

Object Space Screen Space

Splat Calculate Correct

Figure 1: The outline of our screen space normal recon-
struction. The first pass consists of splatting the depth
values which are used in the consecutive passes. The
second pass approximates the surface normal, while the
optional third pass smooths the resulting values.

The first pass is a simple splatting of the input data
and provides the depth information required by recon-
struction. Each pixel is hereby surrounded by neighbor
candidates. The second pass uses these depth values
and computes surface properties. The candidates are
inspected and rejected if the distance is too large, i.e.
their interpolation weight is too small. The last pass is

optional and allows a further enhancement of the qual-
ity of the reconstructed properties.

Splatting the Point Cloud
We draw the point cloud, which will be reconstructed,
using either a fixed or an approximate point size. Our
approach only requires a depth buffer for computation
of the surface information. As the depth-buffer is gen-
erated, in general, by all rendering approaches, this
method can be applied to all scenarios.
To increase the accuracy, we encourage using a multi-
sample depth-buffer. This allows the retrieval of mul-
tiple depth values per individual sample. Using a sam-
pling count of 8 means that we are able to capture –
at most – 8 individual splat depth values at once. It
is, of course, possible that the unprojected world space
coordinates are identical or invalid, i.e. the depth value
was not set. Still it increases the stability of the follow-
ing normal calculations. Multi-sampling is only applied
within the first post process.

Normal Definition
We calculate the wold space coordinates of the current
pixel by un-projecting it based on the multi-sampled
depth-buffer. The reconstruction of the surface normal
can then be performed in three ways. The first method
uses the local derivatives directly available in the frag-
ment shader. The second and third method approximate
the surface using a generic neighborhood description.
This neighborhood is defined by fixed sampling pat-
terns. The most simple version takes 5 samples within
a 3x3 neighborhood, while the most complex version
selects 25 samples in a 7x7 neighborhood, see figure 4.
The samples are focused on the diagonals, which in-
crease the overall area captured during reconstruction.
Note, that we use ascending indices for the opposite
sample positions. This enables a simple definition of
diagonals within a shader.
In our test, we did not observe any differences between
the 5 and 9 sample schemes. This indicates, that the re-
duced representation is already able to capture the sur-
face properties. The extended schemes, i.e. 17 and 25
samples, further increase stability of the results and are
more comparable to off-line methods.
We orient all normals by inverting those, where the z-
component is negative. All selected splat samples are
visible and, thus, require a normal which is facing to-
wards the camera.
To assure correct identification of possible neighbor
candidates, a maximal distance is introduced. Neigh-
boring pixels may not be true neighbors within world
space due to the projection. Therefore, we reject ev-
ery sample that is not within this configurable distance.
This is comparable with the maximal distance in the
MLS [Ale04] or tensor computations [Rit12a].

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 22 ISBN 978-80-86943-75-6

0

1

2 3

4

(a) 5 Samples

0

1

2

3

4

56

7

8

(b) 9 Samples

0 1

234

5

6 7 8

9

10

11

12

13

14

1516

(c) 17 Samples

0 1

234

5

6 7 8

9

10

11

12

13

14

1516

17

18

19

20

21

22

2324

(d) 25 Samples

Figure 2: The used sampling schemes for defining the
local neighborhood of a fragment. The center point 0 is
optional.

Local Derivatives
Shaders support the calculation of local derivatives
within the fragment shader since GLSL version 1.10.
For reconstruction of the surface normal, the functions
dFdx and dFdy are used. These internally extract
neighbor positions from concurrent thread blocks
and are only available in the fragment stage. This
means that the surface is completely splatted and the
individual samples may have overlapped. With c, the
current position in clip-coordinates, the surface normal
~n is computed:

~n(c) = dFdy(c)×dFdx(c)

This method is very sensitive to noise or irregularities
in the depth buffer and in many cases produces normals
not representing a good reconstructed surface. How-
ever, if the surface is continuous and the splat size is
carefully chosen, this method will suffice.

Plane Approximation
Similar to the computation of mesh surface properties,
we approximate face normals within this approach. The
normals are accumulated and the resulting vector is nor-
malized. Finally, we impose an orientation and align
the vector.

To obtain the needed vectors, we use one of the pro-
posed sampling schemes. Each direction vector is built
up either by diagonal or counter-clock-wise (ccw) sam-
ples. The diagonals generate smoother results and do
not require the center point at sample 0. This is sim-
ilar to the anti-alias algorithms used in the rendering
pipeline. The ccw approach accounts more for local
changes and takes the center point into account. In the
diagonal case, we obtain the surface normal by using
the following formula:

~n(c) =
1
N

bN
4 c

∑
i=0

~d4i× ~d4i+2

With ~di = si− si+1. We optimize the sampling schemes
for a diagonal pattern, since we intend to create smooth
surface normals with minimal noise.

Tensor Information
Using tensor information instead of flat patches leads
to a smoother reconstruction. To derive this informa-
tion, the computation of eigenvalues and eigenvectors
is mandatory. We compute the point distribution tensor
by deriving the co-variance matrix for the current posi-
tion c, as presented by [Rit12a] and similar to [Bjö05]:

CM(c) =
1
N

N

∑
k=1

wik(dik⊗dT
ik)

where dik = c−Sk, dT
ik is the transpose, N is the number

of samples around center point c, Sk the sample and wik
is a weighting function. Here, we apply a weighting of
wik =

1
‖dik‖2

.

The tensor product ⊗ is built by the direction vectors
pointing from the current fragment’s world coordinate
to its points in the neighborhood. The weighted sum of
these vectors result in the final point distribution tensor.

We compute the eigenvalues with the “Cordano"
method presented by [Kop06]. This approach results
in more stable vectors than the method proposed by
Hasan et al. [Has01]. Similar findings were made by
the developers of openWalnut [Walnut]. The eigenvec-
tor related to the minor eigenvalue hereby represents
the surface normal. The vector is easily oriented, since
the calculation is performed in clip-coordinates and the
normal vectors have to face the camera.

Smoothing Normals
In a second, optional, screen space pass we correct the
computed normals. We extract and scale adjacent nor-
mals within a local neighborhood, where the center nor-
mal is being favored. The surface normal is yield by
accumulation of the weighted vectors.

Different weights and neighborhood sizes can increase
the accuracy of the result. However, this does not apply
to all situations. Especially, when using the plane ap-
proximation method, quality decreases, when the nor-
mals contain lots of noise.

4 RESULTS
We implemented a prototype, which has been tested on
a i5 670 system with 8 GB RAM and a GeForce 680
running on Windows 7.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 23 ISBN 978-80-86943-75-6

 0

 5

 10

 15

 20

LD PD PC TI

T
im

e
 [

m
s
]

Method

No Correction
With Correction

Figure 3: Timing results achieved using a screen size
of 1024x768 with 8 multi-samples and the 9 samples
scheme. LD denotes the local derivatives, PD the plane
approximation using diagonals, PC the plane approx-
imation using counter-clock-wise pattern, and TI the
tensor information.

Timings
On all systems, we observed interactive frame rates
with all methods. The fasted method is the local deriva-
tives (LD) approximation, while the tensor information
(TI) is the most expensive variant. The plane approx-
imation with diagonals (PD) is slightly faster than the
tensor variant. The ccw plane approximation (PC) is
worse in terms of performance compared to the PD, due
to the definition of the sampling scheme.

In figure 3, the average processing times are shown, in-
cluding the generation of the depth values. We used
a fixed multi-sampling count of 8 in all presented tim-
ing results. Thus, the real number of samples taken per
pixel needs to be multiplied by 8. For better readability,
we continue to use the introduced sampling count.

The splatting of the point cloud requires a significant
amount of time. In our tests, it varied in the range of
30% to 50% mainly depend on the used screen and splat
sizes.

The used sampling scheme size has a large influence
on the performance and quality of the reconstruction,
as seen in figure 4. The performance scales linearly
with the number of used samples. However, the quality
of the reconstruction is not necessarily improved when
using a very high sampling count. This is due to the
fact that the surface is smoothed and local information
is suppressed.

We also measured the contribution of the individual
steps performed by our approach. Interestingly, the
splatting itself consumes a large amount of the overall
processing time, while the correction requires only very
little processing time. The larger the number of used
samples, the higher the reconstruction times. Table 1
lists the detailed timings of the involved steps: “Splat”
represents the splatting of the depth values, “Normal”

 0

 20

 40

 60

 80

 100

LD PD PC TI

T
im

e
 [

m
s
]

Method

5 Samples
9 Samples

17 Samples
25 Samples

Figure 4: Influence of changing sampling scheme size
for the reconstruction methods. Results taken with a
screen resolution of 1600x1200. All methods use a 8
times multi-sampled depth-buffer.

9 Samples Scheme / 8 Multi-samples
Operation Min [ms] Max [ms] Avg [ms]
Splat 8.963 9.030 9.000
Normal 17.521 18.435 17.968
Correction 0.468 0.717 0.493
17 Samples Scheme / 8 Multi-samples
Operation Min [ms] Max [ms] Avg [ms]
Splat 8.801 10.654 8.980
Normal 34.278 35.711 34.890
Correction 0.466 5.740 0.702

Table 1: Distribution of the processing times among the
individual operations of the proposed method. Results
taken with a screen resolution of 1600x1200 using the
tensor method.

the reconstruction and “Correction” the final smooth-
ing.

Visual Results
All methods are able to reconstruct both noisy and
smooth surfaces. We use several splatted object point
clouds as test cases. All point clouds consist of at least
250k points to assure a high sampling density.

The results of the described reconstruction methods are
shown in figure 5. These indicate that the TI method
provides a stable and accurate reconstruction. The PD
approach provides excellent results in smooth data sets.
The LD approach always generates large noise. Despite
not being suitable for a high quality surface approxima-
tion, it is the fasted approach.

To simulate noisy data, we alter the vertex positions
within the splat shader. A light source is positioned
below the object. The illuminated scene is shown in
figure 6. The TI method generates the smoothest result,
while the PD method yields more normals that differ
widely from the original ones. The LD method pro-
vides the worst reconstruction. All methods generate

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 24 ISBN 978-80-86943-75-6

(a) Original

(b) Tensor (c) Plane approximation (diag-
onals)

(d) Plane approximation (ccw) (e) Local derivatives

Figure 5: Reconstruction of the surface normal used
for illumination. (a) shows the original object with pre-
computed normals. (b) to (e) depict the proposed re-
construction methods.

more invalid normals in the low sampled region on the
top.

Figure 7 illustrates the influence of the optional correc-
tion pass. The corrected normals are smoother and the
number of correctly oriented surface normals is higher.
The vectors are visualized via colors showing the x-, y-,
and z-coordinates as red, green, and blue values.

(a) Original

(b) Tensor (c) Plane approxi-
mation

(d) Local derivatives

Figure 6: Reconstructed normals used for illumination
in a test scenario with two planes. Noise is added to the
input data. Even normals at the edge are well recon-
structed, but tend to be smoothed.

(a) Uncorrected (b) Corrected

(c) Difference Image

Figure 7: The influence of the correction pass applied
to an ellipsoidal surface. The surface xyz-normal is il-
lustrated as a rgb-color. The corrected version (b) con-
tains more valid normals. The difference is visualized
in (c).

Since the correction pass is very fast and increases the
stability of the reconstruction, we always enable this
pass in the following tests.

Application to a LIDAR Data Set
A point could stemming from an airborne laser-scan is
used for further investigation of the technique and vali-
dation of the technique by a real-world application. We
chose a small section of a bathymetric scan of the river
Loisach in Bavaria (Germany), acquired with the hy-
drographic laser scanner Riegl VQ-820G [Ste10]. The
scan contains different kinds of structures: fields, trees,
lower vegetation, a river, a street with cars, power ca-
bles and a steep slope partially covered with vegetation.
Figure 8 shows a side and a top view of the scan.

The two million points are colored by the minor
eigenvector of the point distribution tensor computed
in world-space.

The point distribution tensor was computed by using a
neighborhood radius of 0.5, 1.0 and 2.0 meters. Two
different weighting functions have been tested: con-
stant weight and 1

‖dik‖2
weight. Using a kd-tree for find-

ing neighbors and 6 OpenMP parallel threads on an In-
tel Xeon X560@2.67GHz the according computation
times are 41, 85, and 218 seconds for the three radii.
This computation of the tensor is a demanding com-
putational tasks. However, it has been shown, that the
tensor can be used for feature extraction, object recog-
nition, and to improve the segmentation of point clouds
[Rit12a][Rit12b][Bjö05]. When just looking at the mi-
nor eigenvector via color, the fields, the river, the street,
the slope and the vegetation can be well distinguished
from each other, visually.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 25 ISBN 978-80-86943-75-6

(a) Side view

(b) Top view

Figure 8: LIDAR laser-scan of a section of the Bavar-
ian river Loisach in Germany. Laser echoes are illus-
trated as colored points. Color shows the minor eigen-
vector of the point distribution tensor. Vegetation can
be visually distinguished from the ground and the river.

Next, we compare this expensive, fine grain computa-
tion in world space with our screen space technique.
The results indicate that the approach is able to recon-
struct the normals with rather high quality. The nor-
mals widely match with the normals calculated in world
space, as shown in figure 9. However, differences in the
forest areas of the scan are visible.

Also, where the sampling density near the camera po-
sition is not high enough to ensure high quality recon-
struction in this region.

To compare the results of the different methods, we
recorded a series of images from the Loisach data set.
The TI method produces the most reliable results, while
requiring a high sampling count. The PD method is able
to create very smooth normals regardless of small sur-
face changes, e.g. the missing power line in the upper
region 10. The PC method includes it, but is more un-
stable. The LD method is the most efficient approach
while yielding the worst quality in comparison to the
other methods.

The correction pass increases the quality and the sta-
bility of the results by reducing the number of invalid
surface normals. Figure 10c illustrates the enabled cor-
rection pass and figure 10d .

5 CONCLUSION
Our results show that a fast approximation of the sur-
face normal can be achieved in real-time. Here, the sur-
face is solely reconstructed from the depth-buffer and
projection parameters. With our approach a preprocess-
ing of surface information may be delayed until a re-
gion of interest has been selected. The results indicate
that especially the tensor-based approach to determine
the surface normal of a point cloud is a well-working
method.

In comparison to the off-line world space method, we
are able to create similar results at interactive frame
rates. The loss of quality is negligible and is only vis-
ible in under-sampled regions. However, this method
can only provide an approximation of the real point-
cloud’s surface information. The tests show that an in-
crease of the neighborhood size decreases the perfor-
mance linearly. A good quality is already achieved with
small neighborhood sizes. The focus on the diagonals
in the sampling schemes reduce the number of required
samples.

6 FUTURE WORK
We plan to combine this technique with level of de-
tail rendering to provide good visual representations of
large airborne LIDAR scans. The surface normals pro-
vide important information to control such a level of
detail algorithm.

The splatting technique could be enhanced by utilizing
more information represented in the point distribution
tensor. Extracting some features of the tensor will im-
prove the readability of point clouds without expensive
pre-computations.

Additionally, we plan to enhance the reconstruction
method by providing more weighting functions besides
the 1

‖dik‖2
weight for the computation of the co-variance

matrix.

To avoid expensive re-calculations, we plan to employ
a caching strategy. A re-computation of the surface nor-
mals would only be required when camera location or
point coordinates are changed, further increasing the
overall performance of the approach.

7 ACKNOWLEDGEMENTS
Special thanks to Frank Steinbacher for providing the
LIDAR data set of the river Loisach. This work was
supported by the Austrian Science Foundation FWF
DK+ project Computational Interdisciplinary Modeling

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 26 ISBN 978-80-86943-75-6

(a) Loisach screen space normals, tensor, 9 samples (b) Loisach screen space normals, tensor, 9 samples, illuminated

(c) Loisach world space normals, 1m, squared (d) Loisach world space normals, 1m, squared, illuminated

Figure 9: The reconstruction of the minor eigenvector using the fast screen space approach.

(W1227), and grant P19300. This research employed
resources of the Center for Computation and Technol-
ogy at Louisiana State University, which is supported
by funding from the Louisiana legislatures Information
Technology Initiative. This work was supported by the
Austrian Ministry of Science BMWF as part of the Uni-
Infrastrukturprogramm of the Forschungsplattform Sci-
entific Computing at LFU Innsbruck.

8 REFERENCES

[Con10] Connor, M., and Kumar, P.: Fast Construction
of k-Nearest Neighbor Graphs for Point Clouds.
IEEE TVCG 16, No.4. pp.599–608, 2010.

[Yan06] Yang, R., Guinnip, D., Wang, L.: View-
dependent textured splatting. The Visual Com-
puter 22, pp.456–467, 2006.

[Has01] Hasan, K.M., Basser, P.J., Parker, D.L.,
Alexander, A.L.: Analytical computation of
the eigenvalues and eigenvectors in DT-MRI. J.
Magn. Reson. 152, pp.41–47, 2001.

[Ale04] Alexa, M., Rusinkiewicz, S., and Adamson,
A.: On normals and projection operators for sur-
faces defined by point sets. Eurographics Symp.
PBG., pp. 149–155, 2004.

[Bou212] Boulch, A., and Marlet, R.: Fast and Ro-
bust Normal Estimation for Point Clouds with
Sharp Features. Comp. Graph. Forum 31, No.5,
pp.1765-1774, 2012.

[Walnut] Open Walnut. http://openwalnut.
org.

[Ben07] Benger, W., Ritter, G., Heinzl, R.: The Con-
cepts of VISH. 4th High-End Vis. Workshop,
pp.26–39, 2007.

[Ben04] Benger, W., Hege, H.-C.: Tensor splats. Conf.
on Vis. and Data Analysis, Vol.5295, pp.151–162,
2004.

[Ber94] Berkmann, J., and Caelli, T.: Computation
of surface geometry and segmentation using co-

variance techniques. IEEE TPAMI 16, No.11,
pp.1114–1116, 1994.

[Rit12a] Ritter, M., Benger, W., Cosenza, B., Pullman,
K., Moritsch, H., Leimer, W.: Visual Data Min-
ing Using the Point Distribution Tensor. IARIS
Workshop on Computer Vision and Computer
Graphics, VisGra, 2012.

[Rit12b] Ritter, M., Benger, W.: Reconstruction Power
Cables From LIDAR Data Using Eigenvector
Streamlines of the Point Distribution Tensor Field.
WSCG, pp.223–230 ,2012.

[Bjö05] Johansson, B., and Moe, A.: Object Recogni-
tion in 3D Laser Radar Data using Plane triplets,
technical report LiTH-ISY-R-2708, Dept. EE,
Linköping University, 2005.

[Rus00] Rusinkiewicz, S., Levoy, M.: QSplat: A Mul-
tiresolution Point Rendering System for Large
Meshes, SIGGRAPH ’00, pp.343–352, 2000.

[Bot05] Botsch, M., and Hornung, A., and Zwicker,
M., and Kobbelt, L.: High-quality surface splat-
ting on today’s GPUs. Eurographics VGTC Sym-
posium on PBG, pp.17–24, 2005.

[Sch11] Schiffner, D., Krömker, D.: Three Dimen-
sional Saliency Calculation Using Splatting, 6th
ICIG, pp.835–840, 2011.

[Shi09] Shirley, P., and Marschner, S.: Fundamentals
of Computer Graphics, 3rd Edition, A.K. Peters
Ltd, 2009.

[Kop06] Kopp, J.: Efficient numerical di-
agonalization of hermitian 3x3 matrices,
arXiv:physics/0610206v1, 2006.

[Ste10] Steinbacher, F., Pfennigbauer, M., Ulrich, A.,
and Aufleger, M.: Vermessung der Gewässersohle
- aus der Luft - durch das Wasser, in Wasser-
bau in Bewegung ... von der Statik zur Dynamik.
Beiträge zum 15. Gemeinschaftssymposium der
Wasserbau Institute TU München, TU Graz und
ETH Zürich, 2010.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 27 ISBN 978-80-86943-75-6

(a) World space, 1m squared (b) Local derivatives

(c) Tensor, 25 samples (d) Tensor, 25 samples, no correction

(e) Plane approximation, diagonals, 25 samples (f) Plane approximation, ccw, 25 samples

Figure 10: Comparison of the different reconstruction methods used on the Loisach LIDAR data set.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Communication papers proceedings 28 ISBN 978-80-86943-75-6

102 CHAPTER 4. COMPUTATIONAL PERFORMANCE OPTIMIZATION

5 Application

5.1 Preliminaries

5.1.1 Enhancing Point Cloud Visualization

Tensor Splats: Since the neighborhood analysis is based on a second order tensor,
a suitable visualization method was selected, extended, and employed. Tensor
splats were used to illustrate the point distribution tensor. Tensor splats were
introduced by Benger and Hege (2004). For visualization, a splat is drawn at each
tensor’s position; oriented, textured, and colored dependent on its shape factors.
Barycentric blending is used to steer the visual appearance, see Figure 5.1.

Figure 5.1: (Left:) Barycentric blending of shape factors by scaling the main
axes of an ellipsoid. (Right:) Besides shape, color, texture, and transparency are
adjusted for tensor splats.

In contrast to a basic ellipsoid visualization tensor splats reduce visual clutter
by hiding spherical shapes (homogeneous case) and semi transparent alpha blend-
ing. A stretched Gabor function is used as a transparency texture to enhance the
visual direction. The splats fade to transparent at their borders. This allows to
visually blend into each other, resulting in a line like fiber structure (see figures in
the publications below). In data, often the regions of high linearity and planarity

103

104 CHAPTER 5. APPLICATION

are of more interest than the homogeneous regions, where the tensor splats become
fully transparent and invisible. Originally, the method was developed to highlight
preferred diffusion directions of water in the human brain and to illustrate space
time curvature close to objects of immense density and strong gravitational fields,
such as black holes or neutron stars. In both cases the homogeneous areas do not
carry relevant information, thus they can be hidden in the visualization. Due to
the visual properties the method is especially suited for large data. In its full com-
plexity it allows to additionally steer brightness and saturation. However, this was
not used in our applications as visualizations become hard to read when encoding
too much information in one illustration.

All visualizations in the publications presented in this section were created us-
ing the vish visualization shell (Benger et al., 2004). Application data had to be
first converted into the underlying data model by implementing HDF5 based data
converter programs. Within vish a visualization task is organized in a network
structure of modules (or components). To enable the point distribution visualiza-
tion a module was developed and added – operating on vertex data – computing
the second order tensor field. It was extended later to handle different particle
sizes via an additional scalar data field (radii) on the vertices, to employ different
radial weighting functions, and to support a discrete explicit number of neighbors.
A previously implemented kd-tree was used for the neighborhood search and the
tensor splats module for the visualization of the tensor field. The tensor splat
module was extended to also show the inverse of the tensor.

Astrophysics: The method was first applied to astrophysical simulations.
Here, two different simulations were chosen to present an application of tensor
field visualization in particle based data: a cosmological evolution and a wind
tunnel galaxy simulation. Both simulations investigate processes of the develop-
ment of our universe. The former analyses how cosmological structure is formed.
Therefore, the theory of concordance is employed, which identifies cold dark mat-
ter as the driving material in the formation process. Cold dark matter is modeled
by collision less particles. A N -body simulation of 130 million particles is car-
ried out. The simulation uses a hybrid approach of hierarchical multi-scale grids
and particles to discretize spacetime. Initially, a Gaussian random distribution
is assumed and then particles are evolved over time. Besides cold dark matter
normal baryonic matter is included in the simulation. The focus of the study is
on investigating secondary effects: within the formation of galaxies in dark matter
halos, the chemical enrichment of the surrounding gas. Chemical transport into
the inter cluster medium is of special interest. To enable the large variation in
spatial and temporal scaling analytical models are included into the simulation.
Semi-analytic formation models are driven by the numerical simulation. Within
the scope of this thesis the visualization of the forming dark matter particles were

5.1. PRELIMINARIES 105

of interest. The point distribution tensor computation was applied along with
the tensor splat technique. The 130 million particles were enriched by geometri-
cal distribution information, which enhanced the readability of the point particle
visualization.

A second numerical simulation targets the process of star forming by ram pres-
sure stripping of a galaxy. Galaxy clusters have been results from the cosmological
simulation. They are the largest gravitational bound structures in the universe and
consist of galaxies, dark matter, and intra cluster medium (ICM); a very hot and
thin gas. Star formation happens in the interaction of the gas and the galaxies
in the so called inter stellar medium (ISM); the gas in the galaxy, which is be-
ing stripped off by the ICM due to high pressures. Inside the ISM, in molecular
clouds, stars are born from dust and gas (mainly hydrogen and helium) by building
high density clumps. Dense clumps can create very high gravitational forces and
collapse. Here, an N -body simulation of dark matter and stars is coupled with
a smoothed particle hydrodynamics method for the simulation of the ICM’s gas.
The simulation uses heuristic recipes to model star formation and other secondary
effects. A ’wind tunnel’ is set up where a galaxy is moving through a cube filled
with gas particles of the ICM.

Figure 5.2: SPH simulation captures data fields in a continuum by particles.
Weighting kernels are used to interpolate values; position, velocity, pressure,
etc. are stored solely at the particles. In contrast to simulations of water (left),
gas simulations typically result in varying densities, non homogeneous particle
distances and sizes (right).

In smooth particle hydrodynamics particles follow the fluid’s flow. State vari-
ables are stored for each particle. Typical field variables are: position, pressure,
and velocity; more fields can be added to capture additional physical phenomena.
Continuous fields are created by using kernel functions; radial distance weights.
A field value in between particles is obtained by interpolation of the values at the

106 CHAPTER 5. APPLICATION

particles using the distance weights; by ’smoothing’ over the neighborhood. A field
value of a field Φ in a continuum domain Ω at a location x is defined as:

Φ(x) =

∫

Ω

Φ′(x)δ(x− x′)dΩx′

with δ the Dirac function. In SPH smooth kernel functions ω(x, h) are employed
to approximate the Dirac function. For ’small’ sizes of the support radius h one
obtains:

Φ(x) ≈
∫

Ω

Φ(x′)ω(x− x′, h)dΩx′ (5.1)

≈
∫

Ω

Φ(x′)

ρ(x′)
ρ(x′)ω(x− x′, h)dΩx′ .

Φ(xi) = Φi ≈
∑

j

Φj

ρj
ρjVj︸︷︷︸
mj

ω(xi − xj, h), (5.2)

with j denoting the index of the neighboring particles of particle i, Vj volume and
mj mass. The density can be estimated by the particle’s spatial distribution. From
densities, pressures can be computed. Note that a partial derivative of a field is
obtained by combining the derivatives of the underlying kernel functions:

∂Φ

∂x
=

∑

j

Φj

ρj
mj

∂ω

∂x
. (5.3)

Pressure is linked to density using the partial derivatives. The equations of mo-
tion for each particle can be formulated; conserving linear and angular momen-
tum (Monaghan, 2005). Figure 5.2 illustrates a water and a gas simulation. A
smoothing kernel function is indicated as well. In the wind tunnel experiment
gas was simulated. Inhomogeneously distributed particles in space and time were
the result. Here, the tensor visualization technique was applied to improve the
readability of the gas particle distributions.

In the cosmological simulation the tensor visualization enhanced the pure trans-
parent point visualization. It allows to visually differentiate between planar and
homogeneous clusters and also revealed an hourglass structure in the central clus-
ter, Figure 14, (Benger et al., 2012); indicating on the motion pathways of the
particles. The wind tunnel simulation generally revealed, that the star formation
rate was especially high in gas trails behind formed particle blobs. The tensor
visualization enhanced the overall readability of the geometric distribution of the
particle simulation and, also, highlighted linear regions – the trails – close to the
blobs, were stars are born, see Figure 5.3 and Benger et al. (2012).

5.1. PRELIMINARIES 107

Figure 5.3: Smooth particle hydrodynamics simulation of a galaxy in the inter
cluster medium. Regions in the wake of gas blobs were identified for statistically
increased star formation rates (left). These trails are also enhanced by the tensor
visualization, as green splats (right).

Geoscience: A second domain was chosen to experiment on point based data
visualization. Two data sources stemming from geosciences were analyzed: point
sampled coast lines and airborne light detection and ranging (LiDAR) laser scan-
ning. A world wide data set of coast lines1 was analyzed and a small, but highly
dense, LiDAR scan of 4.81 million points, covering an area of 300m× 50m. The
LiDAR dataset was captured by a measurement laser prototype on a small airborne
survey mission in Lower Austria; in cooperation with the companies AHM2 and
RIEGL3. A helicopter was used for the data acquisition in a not yet commercial
setup of the bathymetric laser scanner Riegl-VQ820-G, as presented in Steinbacher
et al. (2012).

LiDAR data already carries internal neighborhood information on a low level.
Figure 5.4 illustrates the process of airborne laser scanning and neighborhood
relations. Laser light is pulsed with a very high frequency; 50 kHz for the employed
data set. Light pulses are emitted from the laser source. On a nanosecond scale, the
light intensity distribution of one pulse has a shape similar to a Gauss distribution,
see Figure 5.4 (left). The light pulse travels at the speed of light and is reflected
e.g. at a solid obstacle. The light beam has a divergence. The so called footprint
size was about 10 cm on ground, by operating at a flight altitude of about 100m, for
this scan. The light is reflected and refracted in different directions at the object.
A light sensor located close to the laser source starts to record light intensities
when a certain intensity threshold is reached. From one pulse, several echoes
return with different time stamps and intensities. The time stamped intensities
can now be used to compute 3D space locations. Therefore, the angle and time

1https://www.ngdc.noaa.gov/mgg/shorelines
2http://www.ahm.co.at
3http://www.riegl.com

https://www.ngdc.noaa.gov/mgg/shorelines
http://www.ahm.co.at
http://www.riegl.com

108 CHAPTER 5. APPLICATION

B

A

C

Figure 5.4: (Left:) Airborne light detection and ranging generates multiple mea-
sures per laser shot. Light intensities are sent out and recorded. (Center:) Laser
shots follow a scan pattern; i.e. linear or circular. (Right:) By known time, scan
angles and the position and angles of the laser scanner 3D points can be computed.
Neighboring points represented in the local coordinate system of the laser scanner
(time, scan line, and angle within a scan line) need not be neighbors in 3D space.

stamp of the pulse, the time stamps of the returned echoes, and the position of the
laser source are required. Thus, return echoes carry a neighborhood information
by time, angle, and scan line. But, neighbors in these local coordinates are not
necessarily neighbors in 3D space, see Figure 5.4 (right). The two marked points
share the same scan angle, laser shot, and have a similar time stamp. Still, they
are far from being neighbors in space. Thus, the point distribution tensor was
employed for visual analyzes.

Again, data converters were developed to enable data storage and handling via
an HDF5 based format. The vish environment was then utilized for visualization,
further development, and visual analyzes. The tensor algorithm was extended by
more neighborhood control options, and work started on performance optimiza-
tion, especially on the neighborhood search by GPU compatible grid hashing and
bitonic sorting, as outlined in Section 4.1.2.

The analyzed shape files representing the coast revealed a weakness in the kd-
tree data structure. Some lines were sorted in the data, such that space division
by the tree happened in a very inefficient way. A few but very deep branches could
be generated. A simple random shuffle on the points to be inserted into the kd-
tree was implemented to circumvent this shortcoming. The visual analysis showed
no strong improvement for the coastlines. However, in case of the LiDAR data
a visual classification became apparent. The ground, vegetation, and the power
cables were visually enhanced and became better distinguishable. The directional
fibers of the tensor splats visually created linear structures of the point cloud;
i.e. for the cables and rods of the power poles, see Ritter et al. (2012)* below.

5.1. PRELIMINARIES 109

5.1.2 Geometric Reconstruction

The visual exploration via tensor splats of the point distribution tensor revealed
clearly linear structures, such as the power cables. Also, the directions of the
eigenvectors followed the cables prominently. Inspired by methods applied on
the diffusion tensor in diffusion tensor magnetic resonance imaging (DT-MRI) a
next study was carried out, to reconstruct those power cables. In DT-MRI the
movement of water molecules in human tissue is measured, see Figure 5.5. The
resulting directions are then captured in a second order tensor field, holding the
preferred diffusion directions of water. Formally, the tensor is defined via:

∂Φ(x, t)

∂t
= ∇D(∇Φ(x, t)) (5.4)

D(v) =
(
Di(0) +Di,j(0)vj + 0.5Dij,k(0)vjvk...

)
ei, (5.5)

where D, the flux, is a function of the water concentration gradient ∇Φ(x, t)
and Di,j(0) a second order tensor; ei is the Euclidean basis (see e.g. Benger et al.
(2006)). The tensor is the first non vanishing term in a Taylor series expansion;
higher orders can usually be neglected.

Figure 5.5: Schematic depiction of magnetic resonance imaging capturing diffusion
directions of water in tissue. (Left:) The measured directions at space locations are
encoded by a second order tensor; indicated by ellipses. (Right:) The eigenvectors
of the tensor field can be used to trace neurons and allow to classify and segment,
e.g. regions in the human brain.

When scanning a human brain, there are different types of tissue, which are
separable by the directional information: grey matter and white matter. White
matter contains elongated myelinated axons, thus, such tissue shows a strong dom-
inant diffusion direction. In contrast gray matter (and also tumors) have no dom-
inant directions. The tensor holds integrated directional information over a small
spatial volume. Its precision dependents on the resolution of the scanning device.
Thus, a homogeneous tensor could also be the result of crossing of axons; mix-

110 CHAPTER 5. APPLICATION

ing dominant directions. Still, and with increasing available resolution, MRI data
allowed to segment and classify human brain regions.

The second order diffusion tensor relates to the point distribution tensor. In-
stead of diffusion directions, the directions from a point of reference to its neigh-
bors are encoded; mathematically the directional encoding is the equivalent. Fiber
tracking is a technique used in DT-MRI data to trace along tensor directions and
axons; to find and analyse interconnected brain regions. A similar technique was
applied on the point cloud tensor data of the LiDAR scan. In contrast to axons
in the human brain, power cables of a power line were traced.

A previously developed stream line integration algorithm (Ritter (2011)) was
extended. The algorithmic development required to enable the support of mesh
free, point based data; i.e. kernel based interpolation. In DT-MRI uniform grid
structures are used. Also, the stream line integration was extended to follow
eigenvector directions instead of vectors. Eigenvectors are bidirectional, thus, an
integration should always follow the ’axis’ of the vector, even when it is pointing
contrarily with respect to the current integration direction.

Seven weighting functions were tested for data interpolation and for tensor
computation. The eigenvector streamline algorithm was first extended to inte-
grate on an original DT-MRI dataset, and then compared to the results of the
same dataset but converted to a point based discretization. Two different ex-
plicit integration schemes were tested: symplectic Euler and Dormand-Prince-853
(DOP853) (Dormand and Prince, 1980). The DOP853 is an explicit Runge-Kutta
scheme of order 8 with included error estimation and step size control. Internally
it uses order 5 and 3 for error measure and step size optimization. It exhibits a
good trade off between accuracy and run time performance, when there is a need
for high accuracy (Hairer et al., 1993)4. The work shows in the artificial test cases
of the circle and rectangle, that the high order integration improves the circle, but
cannot handle abrupt changes in curvature, i.e. the sharp corners of the rectangle.

Finally, the best cable reconstruction was found by employing the DOP853
integrator, the quadratic weighting function for the tensor computation, and the
SPH kernel of order 5 for the mesh less interpolation. A constant radius was
employed for the tensor computation; see Ritter and Benger (2012)* below.

4http://www.unige.ch/~hairer/software.html

http://www.unige.ch/~hairer/software.html

Visual Data Mining Using the Point Distribution Tensor

Marcel Ritter
Graduate School for Scientific Computing

University of Innsbruck
Innsbruck, Austria

marcel.ritter@uibk.ac.at

Werner Benger
Center for Computation & Technology

Louisiana State University
Baton Rouge, USA
werner@cct.lsu.edu

Institute for Astro- and Particle Physics
University of Innsbruck

Innsbruck, Austria
werner.benger@uibk.ac.at

Biagio Cosenza
Distributed and Parallel Systems Group

University of Innsbruck
Innsbruck, Austria

cosenza@dps.uibk.ac.at

Keera Pullman
ESRI Australia

Darwin, NT, Australia
kpullman@esriaustralia.com.au

Hans Moritsch
Distributed and Parallel Systems Group

University of Innsbruck
Innsbruck, Austria

hans@dps.uibk.ac.at

Wolfgang Leimer
Distributed and Parallel Systems Group

University of Innsbruck
Innsbruck, Austria

wolfgang.leimer@student.uibk.ac.at

Abstract—We explore a novel algorithm to analyze arbitrary
distributions of 3D-points. Using a direct tensor field visualiza-
tion technique allows to easily identify regions of linear, planar
or isotropic structure. This approach is very suitable for visual
data mining and exemplified upon geoscience applications.
It allows to distinguish, for example, power lines and flat
terrains in LIDAR scans. We furthermore present the work
on the optimization of the computationally intensive algorithm
using OpenCL and potentially utilizing the Insieme optimizing
compiler framework.

Keywords-metric tensor; scientific visualization; point cloud;
OpenCL.

I. INTRODUCTION

Point clouds occur as primary data sources in different
scientific domains, e.g., stemming from simulations in com-
putational fluid dynamics by smooth particle simulations
or from observational methods, such as light detection and
ranging (LIDAR) laser scanning [1]. Classification of point
clouds is still ongoing research for LIDAR laser scan data
[2]. Geometric information about the local point distribution
can be used for classification, for constructing surfaces, or
as basis for other algorithms. An algorithm to compute
Gaussian and mean curvature on polygon meshes was pre-
sented in [3], based on the tensorial product of the polygon’s
normal vectors. A product with additional weights was used
to compute the co-variance matrix of point neighborhoods
describing tangential frames for surfaces in [4]. This co-
variance matrix provides us with a type of smooth transition
between lines, surfaces, and volumes [5].

In this article, we utilize the direct tensor visualization
technique [6] to illustrate the co-variance matrix result-
ing from arbitrary point clouds. Section II introduces the

distribution tensor and the utilized visualization technique,
presented on simple geometric point distributions. Two
algorithms for the tensor computation are described: One
for central processing units (CPUs) and one for graphics
processing units (GPUs). Optimizations are presented and
the Insieme compiler optimization framework [7] is intro-
duced. Our visualization method is demonstrated on two
geo-scientific applications in Section III: On the analysis of
LIDAR laser scan data and the analysis of coastlines. The
paper concludes and describes future work in Section IV.

II. COMPUTING THE POINT DISTRIBUTION TENSOR

A. Mathematical Background

We define the “point distribution tensor” as a measure
constructed from of a set of N points {Pi : i = 1...N}
similar to the co-variance matrices in [4] [8] [5]:

S(Pi) =
1

N

N∑

k=1

ωik(tik ⊗ tτik) (1)

whereby tik = Pi − Pk and an optional weighting function
ωik := f(||Pi − Pk||, r, i). Here, r is an user specified
distance or radius defining the neighboorhood of point Pi.
The weighting function ωik is zero outside this radius. The
distribution tensor is symmetric and positive definite such
as the metric tensor [9] and, thus, yields three eigen-values
when doing an eigen-analysis: λ3 ≥ λ2 ≥ λ1. These are
used to classify the tensor via three shape factors [10],
characterizing the shape of a fitting ellipsoid of the point

neighborhood in barycentric coordinates, see Figure 1:

clinear = (λ3 − λ2) /(λ1 + λ2 + λ3)
cplanar = 2(λ2 − λ1) /(λ1 + λ2 + λ3)

cspherical = 3λ1 /(λ1 + λ2 + λ3)
(2)

with clinear + cplanar + cspherical = 1. A tensor field
visualization method more suitable for large data than
drawing tensor ellipsoids is utilized. Instead of ellipsoids
textured splats are rendered with smooth transitions in color,
orientation, texture and transparency, as shown in Figure 1.

Figure 1. Tensors are visualized as textured oriented disks. The three
shape factors, Equation 2, are used for smooth transitions between linear
(right), planar (left), and spherical (top) shape [9]. In this context, the disks
enhance the visualization of points predominantly distributed on a line, on
a surface, or in a volumetric distribution.

B. Test Cases

Simple analytic test cases were used to verify and study the
properties of the distribution tensor, as illustrated in Figure
2. The point distributions have an extent of 1.0 in spatial
dimensions and have been computed using a neighborhood
radius of r = 0.2. Figure 2 (a) shows linear tensor splats
textured and oriented in one direction. At the corners of
the rectangle tensors become planar caused by two equally
dominant directions in the neighborhood. Homogeneous
distributions are fully transparent and become invisible, as
demonstrated in Figure 2 (c). Here, the inner region is
transparent, the border surfaces become more planar and are
colored red while corner points become linear (green).

C. Algorithm

A first serial algorithm was implemented in the visualization
shell VISH [11] utilizing C++ and OpenGL. Computation
and visualization tasks were split in different modules. The
computation module searches for neighbors in a 3D KD-
Tree [12] within a user specified radius (where ωik > 0.0)
to limit the number of considered points. Alternatively to
setting the radius, also the number of neighbors can be
specified. Furthermore, a scalar field given on the points
can be utilized to set the radius or number of points
for each point individually. Eqn. 1 is utilized to compute
the distribution tensor for each point. Different weighting

(a) Rectangular Distribution

(b) Planar Distribution

(c) Volumetric Distribution

Figure 2. Left: Analytic point distributions illustrated by simple point
rendering. Right: Corresponding distribution tensor fields. Linear 1D, planar
2D and isotropic 3D tensors are visualized using tensor splats, having a
dominant linear, planar and spherical shape factor, respectively.

functions have been implemented inside the neighborhood:
ωik := (r − ||Pi − Pk||)/r, ωik := 1/r and ωik := 1/r2.

Data is represented in an unified data model [9] [13]
which allows support of different types of grid geometries
and topologies. The computation algorithm operates on the
vertices of any grid type. In the following applications point
clouds and sets of lines are used for analysis.

D. GPU implementation

An alternative implementation of the algorithm was done
in OpenCL [14], a framework for multicores and parallel
hardware being able to execute programs also across het-
erogeneous platforms. The neighborhood is controlled by a
fixed radius. Instead of the KD-Tree, an uniform grid was
preferred as data structure to speed-up the neighborhood
search. Here, the loose grid approach was adapted, where
each particle is assigned to one cell based on its position.
The grid’s cell size depends on the influence radius (i.e.,
radius≥cell size). Therefore, each particle can affect the
closest 27 cells while calculating the tensor. This method
allowed to bin the particles into the cells and to sort them
by their grid index. The algorithm comprises four steps:

1) for each particle a hash value is computed, i.e., the
cell index where it is located;

2) particles are sorted by hash; for this step NVidia’s
optimized bitonic sorting [15] is utilized;

3) the sorted list is used to compute the starting cell
where the particle is located, running a thread for each
particle, and performing scattered memory writes;

4) tensor calculation: Each particle searches the closest
27 grid cells from its location and it computes the
tensor with each of the particles in these cells.

Steps 1− 3 are related to the build process of the grid data
structure. The sorting algorithm is highly effective because
it improves the memory access coherency when calculating
the tensor, and reduces thread divergence (particles in the
same thread group tend to be close together in space).

E. Optimization

The CPU algorithm was parallelized using OpenMP [16],
adding a minimal overhead in development. Furthermore,
OpenMP, as also OpenCL is supported by Insieme [7].

The Insieme compiler, under development at the Uni-
versity of Innsbruck, is a source-to-source compiler for
C/C++ aiming at the automatic optimization of parallel
programs implemented with MPI, OpenMP or OpenCL.
It optimizes the source code for a specific platform (e.g.,
NVidia Fermi architecture), and applies transformations such
as loop enrolling and collapsing, thread merge and data
pre-fetching. Insieme aims at supporting programmers in
effectively optimizing programs across different architec-
tures, including shifting of computations from CPU to GPU
cores. Optimizations are performed at compile-time through
code analysis and transformations for sequential and parallel
code regions. An intermediate representation is facilitated
which explicitly describes parallelism, synchronization, and
communication. The program’s behavior is optimized and
customized to the available hardware resources at runtime
by utilizing statistical machine learning techniques based on
a performance analysis database. Performance measures are,
e.g., execution time, energy consumptions, and computing
costs. Preliminary tests will be done with this code which
is now part of the Insieme test cases.

III. APPLICATION RESULTS

The method was applied to two different geoscience ap-
plications. Figure 3 shows a scan of a water basin close
to the Danube in Austria captured with the Riegl hydro-
graphic laser scanner VQ-820G [17]. In the example, a
fixed neighborhood radius of two meters and a constant
weighting function ωik = 1 showed good results. Other
parameters for r and ωik have been tested as well. Figure
3 (a) illustrates the received and processed laser echoes as
a cloud of points; (b) and (c) show the distribution tensor
field. Linear structures, such as the power cables, are well
identified (green). The ground is dominantly planar (red).
Some regions of the ground fade to magenta indicating
less planarity. Here, grass influences the planar tensor to
become more isotropic. Bushes and trees are isotropic or
of an interpolated intermediate shape, mostly appearing

(a) LIDAR Echos

(b) LIDAR Tensors r = 2.0m

(c) LIDAR Tensors r = 2.0m Detail

Figure 3. Distribution tensor field of returned laser echoes from an airborne
laser scan. Linear distributions such as cables and planar distributions such
as ground are emphasized. Vegetation is fading to spherical.

Figure 4. Distribution tensor field of an ESRI shapefile of the earth’s water
bodies and coastlines. The distribution tensor field with 12 fixed neighbors
of the northern part of the United Kingdom is illustrated.

yellow. The computation with the OpenMP version utilizing
4 threads of the 4.81mio points with approximately 600
neighbors per point (r = 2.0m) took 752 seconds on a
i7 M640 2.8GHz with 7.7GB RAM and NVidia Quadro
FX3800M using Linux64bit, gcc 4.4.5, and Vish SVN 3854.

Another application was the analysis of coast and contour
lines. Shapefiles [18] of water bodies and coastlines were
investigated. Figure 4 (b) shows the distribution tensor field
of the coast of the United Kingdom. Unstructured coastlines
are highlighted in green whereas cliffy coast lines are shown
in red, for example when looking at the northern coast of
Scotland. Here, a rather small neighborhood of fixed 12
points turned out to emphasize cliffy coasts.

IV. CONCLUSION AND FUTURE WORK

A new method of enhancing the visualization of point distri-
butions was introduced, described, and demonstrated. Two
different implementations and parallelization approaches
were presented. Using an unified data model opened the
possibility to apply the technique to data sets stemming from
two different scientific applications: The visual extraction of
power cables in LIDAR data and the visual enhancement of
cliffy coastlines. We will further use the tensor analysis on
LIDAR data to enhance point classification and the creation
of digital terrain models. Different weighting functions and
parameter studies will be investigated on more datasets. We
ultimately will use the Insieme framework to optimize our
parallel GPU and OpenMP codes.

ACKNOWLEDGMENT

Thanks to Frank Steinbacher for providing the LIDAR data
sets. This work was supported by the Austrian Research
Promotion Agency (FFG) Airborne Hydromapping, the Aus-
trian Science Foundation FWF DK+ project Computational
Interdisciplinary Modeling (W1227), and grant P19300. This
research employed resources of the Center for Computa-
tion and Technology at Louisiana State University, which
is supported by funding from the Louisiana legislatures
Information Technology Initiative. This work was supported
by the Austrian Ministry of Science BMWF as part of
the UniInfrastrukturprogramm of the Forschungsplattform
Scientic Computing at LFU Innsbruck.

REFERENCES

[1] E. P. Baltsavias, “Airborne laser scanning: existing systems
and firms and other resources,” ISPRS Journal of Photogram-
metry & Remote Sensing, vol. 54, pp. 164–198, 1999.

[2] P. Dorninger, B. S. A. Zamolyi, and A. Roncat, “Automated
Detection and Interpretation of Geomorphic Features in Li-
DAR Point Clouds,” no. 99, pp. 60–69, 2011.

[3] G. Taubin, “Estimating the tensor of curvature of a surface
from a polyhedral approximation,” in Proceedings of the Fifth
International Conference on Computer Vision, ser. ICCV ’95.
Washington, DC, USA: IEEE Computer Society, 1995, pp.
902–.

[4] M. Alexa, S. Rusinkiewicz, M. Alexa, and A. Adamson, “On
normals and projection operators for surfaces defined by point
sets,” in In Eurographics Symp. on Point-Based Graphics,
2004, pp. 149–155.

[5] J. Berkmann and T. Caelli, “Computation of surface geometry
and segmentation using covariance techniques,” Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, vol. 16,
no. 11, pp. 1114 –1116, nov 1994.

[6] W. Benger and H.-C. Hege, “Tensor splats,” in Conference
on Visualization and Data Analysis 2004, vol. 5295. Pro-
ceedings of SPIE Vol. #5295, 2004, pp. 151–162.

[7] DPS Group at Universität Innsbruck, “The insieme
compiler project.” [Online]. Available: http://www.dps.uibk.
ac.at/insieme/

[8] A. Adamson, “Computing curves and surfaces from points,”
Ph.D. dissertation, TU Damrstadt, 2008.

[9] W. Benger, “Visualization of general relativistic tensor fields
via a fiber bundle data model,” Ph.D. dissertation, FU Berlin,
2004.

[10] C. Westin, S. Peled, H. Gudbjartsson, R. Kikinis, and
F. Jolesz, “Geometrical diffusion measures for mri from ten-
sor basis analysis,” in Proceedings of ISMRM, Fifth Meeting,
Vancouver, Canada, Apr. 1997, p. 1742.

[11] W. Benger, G. Ritter, and R. Heinzl, “The Concepts of VISH,”
in 4th High-End Visualization Workshop, Obergurgl, Tyrol,
Austria, June 18-21, 2007. Berlin, Lehmanns Media-LOB.de,
2007, pp. 26–39.

[12] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm
for finding best matches in logarithmic expected time,” ACM
Transactions on Mathematics Software, vol. 3, no. 3, pp. 209–
226, September 1977.

[13] M. Ritter, “Introduction to HDF5 and F5,” Center for Com-
putation and Technology, Louisiana State University, Tech.
Rep. CCT-TR-2009-13, 2009.

[14] KHRONOS Group, “OpenCL,” 2011. [Online]. Available:
http://www.khronos.org/opencl

[15] K. E. Batcher, “Sorting networks and their applications,”
in Proceedings of the April 30–May 2, 1968, spring joint
computer conference, ser. AFIPS ’68 (Spring). New York,
NY, USA: ACM, 1968, pp. 307–314.

[16] OpenMP Architecture Review Board, “OpenMP,” 2011.
[Online]. Available: http://openmp.org

[17] F. Steinbacher, M. Pfennigbauer, A. Ulrich, and M. Aufleger,
“Vermessung der Gewässersohle - aus der Luft - durch
das Wasser,” in Wasserbau in Bewegung ... von der Statik
zur Dynamik. Beitrge zum 15. Gemeinschaftssymposium der
Wasserbau Institute TU München, TU Graz und ETH Zürich,
2010.

[18] ESRI, “ESRI Shapefile Technical Description,” Environmen-
tal Systems Research Institute, Inc, White Paper, July 1998.

Reconstructing Power Cables From LIDAR Data
Using Eigenvector Streamlines of the

Point Distribution Tensor Field
Marcel Ritter

Institute of Basic Sciences in Civil Engineering2

University of Innsbruck

marcel.ritter@uibk.ac.at

Werner Benger

Center for Computation & Technology1

Institute for Astro- and Particle Physics2

werner@cct.lsu.edu

werner.benger@uibk.ac.at

ABSTRACT
Starting from the computation of a covariance matrix
of neighborhoods in a point cloud, streamlines are uti-
lized to reconstruct lines of linearly distributed points
following the major Eigenvector of the matrix. This
technique is similar to fiber tracking in diffusion ten-
sor imaging (DTI), but in contrast is done mesh-free.
Different weighting functions for the computation of
the matrix and for the interpolation of the vector in the
point cloud have been implemented and compared on
artificial test cases. A dataset stemming from light de-
tect and ranging (LIDAR) surveying served as a testbed
for parameter studies where, finally, a power cable was
reconstructed.
Keywords: tensor-field visualization; streamlines;
mesh-free methods; particle systems; point cloud; co-
variance matrix; fiber tracking; LIDAR; DT-MRI

1 INTRODUCTION
Reconstructing lines from point clouds has an impor-
tant application in light detection and ranging applica-
tions (LIDAR). The surveying of power lines and their
geometrical analysis is of great interest for companies
that transmit electrical energy. Large networks of elec-
tric facilities have to be maintained to guarantee stable
electrical power supply and prevent power outages. LI-
DAR surveying is a suitable technique to either detect
damages on the electrical facilities or detect high grow-
ing vegetation in power line corridors [19] [15]. We

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1 Louisiana State University, Baton Rouge, LA-70803, USA
2 University of Innsbruck, Technikerstraße 13/4, A-6020 Innsbruck,

Austria

experiment on a new method to reconstruct linear struc-
tures, stemming from airborne LIDAR surveying. We
utilize a method inspired by diffusion tensor imaging
(DTI) fiber tracking developed, originally, for magnetic
resonance imaging (MRI) to track neuronal structures
in the human brain [5].

1.1 Related Work
Current algorithms for reconstructing power lines are
usually based on data filtering followed by a segmen-
tation of the filtered and reduced point cloud either di-
rectly on the point cloud data or on a rastered 2D im-
age. Melzer [18] first computes a digital terrain model
(DTM) by using the method by Kraus [14] to remove
terrain points. The remaining points are projected onto
a 2D gray-scale raster (image). A Hough-Transform
(e.g. [11]) is utilized iteratively to detect straight lines.
Later, Melzer [17] improved the segmentation of LI-
DAR data also for power cables, based on the so called
mean shift clustering, originally developed for pattern
recognition [9]. Liu et al. [16] introduced a methodol-
ogy based on statistical analysis to first remove ground
points. Then, they project points onto a 2D gray-
scale raster (image) and do a Hough-Transform simi-
lar to Melzer [18], but use a different technique for the
Hough-Transform [8] to detect straight lines. Jwa et
al. [13] developed a four step method. First they se-
lect power-line candidates, by utilizing a voxel based
Hough-Transform to recognize linear regions. After a
filtering process they construct line segments based on
geometric orientation rules and, finally, use a voxel-
based piece-wise line detector to reconstruct the line
geometries.

Weinstein et al. [23] worked on tracking linear struc-
tures in diffusion tensor data stemming from MRI. Be-
sides following the major Eigenvector they developed
some rules for overcoming areas of not linear diffusion.
The flow of Eigenvectors was also used for segmen-
tation and clustering in brain regions as, for example,
shown in [6] and [20]. Jones discusses the study of con-
nections in human brains. He states that tracking the

Journal of WSCG, Vol.20 223 http://www.wscg.eu

diffusion directions is still not solved a in stable way
and is an active research area [12].

Our work is based on previous work on the direct vi-
sualization of the covariance matrix describing the lo-
cal geometric properties of a neighborhood distribution
within in a point cloud, the so called point distribution
tensor [21].

1.2 Our Approach
In our method we do not want to remove any points
but operate on the entire dataset to avoid artifacts due
to a complex point removal method. Instead, we first
compute the point distribution tensor for each point.
Eigen-analysis of the tensor yields the major Eigenvec-
tor, which indicates the dominant orientation of a point
distribution. We may follow this orientation by comput-
ing streamlines along this dominant Eigenvector field in
regions where one Eigenvalue dominates, so-called lin-
ear regions. In contrast, regions where the points are
distributed more isotropic, are indicated by the point
distribution tensor’s Eigenvalues becoming more simi-
lar values. We want to avoid these regions, as they will
not correspond to power cables. This approach is very
similar to the fiber-tracking approach in medical visu-
alization, but in our case the integration of the Eigen-
vectors needs to be done in a mesh-free way, merely
on a point distribution rather than uniform grids. Thus,
it can be applied to airborne LIDAR data without re-
sampling to uniform grids (which would reduce data
resolution and introduce artifacts due to the chosen re-
sampling method).

1.3 Overview of the Paper
Section 2 presents the mathematical background and
describes the implementation of the algorithm in sec-
tion 2.2. Section 2.3 shows verifications by means of
simple artificial point distributions. Here, the influence
of different weighting functions on the tensor computa-
tion and the vector field interpolation during streamline
integration is investigated. Also, two different numeri-
cal integration schemes are tested. In section 3 one set
of power cables is reconstructed from a LIDAR data set
stemming from actual observations. We then explore
the available parameter space for weighting and inte-
gration in order to identify the best values for the given
scenario.

2 ALGORITHM
2.1 Background
In [21] we defined the “point distribution tensor” of a
set of N points {Pi : i = 1, ...,N} as

S(Pi) =
1
N

N

∑
k=1

ωn(|tik,r|)(tik ⊗ tτ
ik), (1)

whereby ⊗ denotes the tensor product, τ the transpose
and tik = Pi −Pk. ωn(|tik|,r) is a weighting function de-
pendent on the distance of a point sample to a center
point Pi and a radius of a neighborhood r, which can
be constant or defined by a scalar field on the points:
r(Pi). We did not find a generally optimal solution for
the weighting function, but implemented seven choices
for our first investigations:

ω1 = 1 (2)

ω2 = 1− x/r (3)

ω3 = 1− (x/r)2 (4)

ω4 = r/x2 (5)

ω5 =

1− 3
2 a2 + 3

4 a3 0 ≤ a < 1
1
4 (2−a)3 1 ≤ a < 2

0 otherwise
(6)

ω6 =

(5
2 −b)4 −5(3

2 −b)3 +10(1
2 − v)b [0, 1

2)

(5
2 −b)4 −5(3

2 −b)3 [1
2 ,

3
2)

(5
2 −b)4 [3

2 ,
5
2)

0 [5
2 ,∞)

(7)

ω7 =

(3− c)5 −6(2− c)5 +15(1− c)5 [0,1)

(3− c)5 −6(2− c)5 [1,2)

(3− c)5 [2,3)
0 [3,∞)

(8)

with a := 2x
r , b := 2.5x

r and c := 3.0x
r , illustrated in Fig-

ure 1. The three functions ω5, ω6 and ω7 are typi-
cal Gauss-like spline kernel functions used in smooth
particle hydrodynamics (SPH) [10]. We use the same
weighting functions for interpolating the vector field
during Eigenvector integration. Even though, interpo-
lation of Eigenvectors and interpolating tensors and lo-
cally computing its Eigenvectors lead to different re-
sults, we utilize the interpolation of the Eigenvector as
a simpler implementation.

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1-average
2-slinear
3-ssquare
4-square
5-sphcubic
6-sphquadratic
7-sphquintic

Distance

W
ei

gh
t

Figure 1: Different weighting functions of the distance interval 0.0 to 2.0,
r = 2.0. Different slopes and characteristics are visualized. The square function
(green) was clamped for axis scaling reasons and would grow further quadrat-
ically to the origin. The weights were normalized regarding to the integral of
the curve in the interval. The curve numbers match the index of the weighting
function: 1-average illustrates ω1, 2-slinear illustrates ω2, ...

We utilize tensor splats [1] for direct visualization of
the tensor field. Figure 2 illustrates a point distribution
along the edges of a rectangle and the corresponding
tensor visualization with a neighborhood being 1/5 of
the longer rectangle edge. We then use Westin’s shape

Journal of WSCG, Vol.20 224 http://www.wscg.eu

analysis method [24] to determine the so-called linear,
planar and spherical shape factors. Points having a lin-
early distributed neighborhood are displayed as green
oriented splats. Planar distributions are displayed as red
disks. The linearity of the distribution tensor is shown
in Figure 4 and Figure 5.

Figure 2: Distribution tensor visualization of a rectangular point distribution.
Top: Points on a rectangle. Bottom: Tensor splats [1] of the point distribution
tensor [21]. At each point one splat, a small textured and oriented disk, is drawn
to represent the properties of the tensor’s shape.

Visualizing streamlines is a common method to study
vector fields. Starting from some seeding point, or ini-
tial condition, a curve q(s) is computed which is always
tangent to the vector field, solving the equation:

q̇(s) = V (q(s)) (9)

with s the curve parameter and V the vector field. Solv-
ing the differential equation at an arbitrary coordinate
location Q within in the discretized data domain re-
quires interpolation of the vector field. For mesh-free
interpolation within a point cloud we use weighting
functions parameterized with a specific radius of influ-
ence:

v(Q) =
∑N

i=1 v(Pi)ω(|Q−Pi|,r)
∑N

i=1 ω(|Q−Pi|,r)
, (10)

with v(Pi) representing the vector at point Pi.

2.2 Software Engineering Aspects
The algorithm was implemented using C++ within the
VISH visualization shell [2]. The implementation ex-
tends a framework for computing integral geometries
in vector fields, such as streamlines, pathlines or time
surfaces. The streamline integration and visualization
is separated into three different components: seeding,
integration and displaying. The first component defines
the initial conditions or seeding geometry. For com-
puting streamlines within vector fields seeding points

are sufficient. However, for streamlines of Eigenvec-
tor fields also an initial direction must be specified, be-
cause the Eigenvector is undirected. Integration based
on an orientation continuing an user-chosen direction
must be possible. Thus, requiring also a vector field on
initial seeding points to disambiguate the Eigenvectors’
orientations into unique directions.

Two new integration modules were developed. The
first one extends the original streamline module, which
was designed for vector field integration in uniform and
curvilinear multi-block grids [4], to Eigenvector field
integration. The second module expands this method
further to allow integrating Eigenvector fields on mesh-
free grids. One of the seven weighting functions (Equa-
tions 2, 3, 4, 5, 6, 7 and 8) and the radial influence
weighting parameter can be specified for the interpo-
lation of the Eigenvector inside the field domain. A
range query on a KD-tree returns the points and their
distances within the neighborhood of radius r. Equa-
tion 10 is utilized and Eigenvectors are aligned in ori-
entation with respect to the Eigenvector of the closest
neighbor. The Eigenvector is reversed if the dot prod-
uct is negative. The integration of the streamline stops
when the neighborhood becomes empty. Both integra-
tion modules support two different numeric schemes for
the integration: explicit Euler and DOP853 [7]. Explicit
Euler is used to get a fast yet inaccurate result. DOP853
is more expensive due to its adaptive stepsize but gives
highly accurate results. When aiming at the same accu-
racy, DOP853 is faster than the Euler method by orders
of magnitude. It is a Runge Kutta method of order eight
using order five and three for error estimation and adap-
tive step size control, providing dense output. Accuracy
measures and timing measures comparing the two inte-
gration methods were done, e.g., in [3].

The display module utilized here is reused from ear-
lier development and implements color-coded illumi-
nated lines utilizing OpenGL, allowing interactive nav-
igation through the generated streamlines. Other mod-
ules, such as displaying ribbons [3] are also available.

2.3 Test Cases
We investigate the two Eigenvector integration modules
on an uniform grid and on mesh-free grids. The Eigen-
vector field of a DTI-MRI scan [1], originally given on a
uniform grid (128x128x56), was converted into a mesh-
free grid, a point cloud holding the same Eigenvectors:
Figure 3 (a) shows a volume rendering of the trace of
the diffusion tensor along with the streamlines, reveal-
ing some brain structure and the location of the stream-
lines. Figure 3 (b) shows the comparison of Eigenvec-
tor streamlines computed on the uniform grid (blue) and
Eigenvector streamlines computed in the point cloud
(white). Both integrations were done with explicit Eu-
ler and a step size of 0.05. The size of a uniform
grid cell is about 0.2, thus, utilizing about four integra-

Journal of WSCG, Vol.20 225 http://www.wscg.eu

Figure 3: Comparison of the influence of integration of an Eigenvector field
given on an uniform and a mesh-free grid. A mesh-free grid was generated
from the uniform for testing. The arrows mark the start positions and directions
of small Eigenstreamlines of a MRI diffusion tensor field. Streamlines on the
uniform grid are blue. On the mesh-free grid they are white.

tion points per grid cell and requiring data interpolation
within each cell. The length of each streamline is set to
1.0. Tri-linear interpolation was chosen for the uniform
grid to compare the results with the linear weighting
function ω2 (slinear) for the mesh-free grid. The gen-
erated lines coincide on most cases. About 9% (13 of
144) do not coincide well. Some start in different direc-
tions. Here, the seeding vector field is almost perpen-
dicular to the initial direction and the influence of the
interpolation method results in different initial stream-
line directions. This issue could be cured by integrat-
ing Eigenvector streamlines in both directions starting
from the initial seeding points, which would also allow
avoiding the seeding vector field.

(a) average, slinear

(b) square, sphcubic

(c) sphquadratic, sphquintic

Figure 4: Influence of different weighting functions on the scalar field linearity,
compare Figure 1. The linearity is illustrated by offset and over-scaling in z-
axis, and gray-scale color-map on the points. Tensor splats directly show the
distribution tensor.

Next, the influence of the different weighting func-
tions on the computation of the distribution tensor was
investigated. We define an analytic distribution of points
along a rectangle as test case for computing the point
distribution tensor. The rectangle is set up using a
width of 10 and a height of 8. The radius parameter
for the neighborhood is r = 0.2. Figure 4 illustrates
the point distribution tensor using tensor splats and its
corresponding linear shape factor by offsetting, over-
scaling and a gray-scale color-map. The offsetting ap-
proach for the linear shape factor clearly illustrates the
influence of the weighting: The “average” method re-
sulting in a very abrupt change in the slope around cor-
ners points. The “slinear” weighting function results
in smoother changes and a more localized influence,
since closer points are weighted stronger than more dis-
tant points. Square shows the smoothest result. The
three SPH spline kernels have an increasing locality
with higher order of the kernel, when comparing sphcu-
bic, sphquadratic and sphquintic. This is demonstrated
in Figure 5 as well: Figure 5(a) shows the result of the

Journal of WSCG, Vol.20 226 http://www.wscg.eu

cubic and quadratic SPH kernel function. When the ra-
dius of the neighborhood is increased to match the ker-
nels there is no visible difference between the sphcubic
in Figure 5(a), sphquadratic and sphquintic in Figure
5(b) in the resulting linearity.

(a) sphcubic r = 0.2, sphquadratic r = 0.2

(b) sphquadratic r = 0.25, sphquintic r = 0.3

Figure 5: Different orders of the SPH kernel functions are compared, see Fig-
ure 1. (a) sphcubic and shpquintic using the same radius for the neighborhood.
(b) sphquadratic and shpquintic, with adjusted neighborhood radius, have a
similar result as the sphcubic (a)-left.

The influence of the integration scheme on the Eigen-
streamline integration is demonstrated in Figure 6. The
distribution tensor of a circular point distribution was
computed using the ssquare weighting function. Ten-
sor splats show the undirected Eigenvector, vector ar-
rows show how the vector is directed within the internal
vector representation. One Eigenstreamline is seeded
downwards at the rightmost point of the circular point
distribution and follows the undirected vectors. The top
image shows Euler integration. Decreasing the step size
would result in a more accurate integration. But, clos-
ing the gap of the integrated circle requires such a small
step size, that the Runge Kutta method outperforms the
Euler method. The 8th order Runge Kutta method suc-
cessfully closes the gap and reconstructs a circle from
the circular point distribution, as shown in the bottom
image. Also, a square-shaped point distribution was
tested as shown in Figure 7. The length of a side is
10. Here, the influence of different weighting functions
on the interpolation of the Eigenvector field was inves-
tigated. The distribution tensor was computed using
the ssquare weighting function with r = 2. An Eigen-
streamline is seeded downwards in the mid of the right
edge. It follows the undirected vectors and flows around
the corners of the rectangle. At each corner some error
is introduced and the streamline is moving apart from

Figure 6: Comparison of different numerical integration schemes in a circu-
lar point distribution. One streamline (white) is seeded at the east-pole of the
circle pointing southwards. Tensor splats and vector arrows illustrate the point
distribution tensor and major Eigenvector. Note, that the Eigenvectors change
orientation at north-east and south-west. Top: explicit Euler. Bottom: DOP853.

the original point distribution. Integration was done
using the DOP853 method. Different weighting func-
tions, mostly with r = 1, were tested for vector field
interpolation. The length of the horizontal gap between
the end and the start of the streamline was used as a
measure for the integration error. Figure 8 shows the
different errors in a bar diagram. The two best results
were achieved using the ssquare and average weighting
function.

Figure 7: Comparison of Euler and DOP853 streamline integration on a
square-shaped point distribution. Tensor splats and Eigenvectors are visual-
ized besides the streamline (white) seeded downwards at the center of the right
edge of the rectangle.

Journal of WSCG, Vol.20 227 http://www.wscg.eu

average

ssquare

slinear

sphquintic

sphcubic

sphquintic 2.0

sphquadratic 1.5

sphquadratic

square

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.335

0.367

0.377

0.389

0.391

0.395

0.401

0.411

0.416

Figure 8: Comparison of errors in the square integration using different weight-
ing functions for the vector interpolation. The weighting function for comput-
ing the tensor was ssquare, compare Figure 1. The values represent the hor-
izontal distance between start and end point of the streamlines. The square’s
length is 10.0. The colors of the bars match the colors in Figure 1.

3 RESULTS
We used a dataset with circa eight million points cov-
ering a water basin close to the Danube in Austria. It
was acquired by a Riegl’s hydrographic laser scanner
VQ-820G [22]. Figure 9 shows the point cloud colored
by the linearity of a distribution tensor analysis. Here,
we wanted to extract one power cable. The cable in the
mid of the three lowest power cables suspended from
the tall power pole. The white arrows mark the explic-
itly user-specified position and direction used as initial
conditions of the streamline integration.

Different parameters and combinations of weighting
functions for the tensor computation and the Eigenvec-
tor interpolation were investigated. The choice of a cer-
tain neighborhood radius and good weighting functions
was crucial to successfully follow the 280 m long power
cable. 41 parameter combinations were tested. For
the tensor computation different radii r = 0.5,r = 1.0
and r = 2.0 and the weighting functions average, slin-
ear, ssquare and the SPH kernels for the tensor were
used. For the vector interpolation radii r = 0.25,r =
0.5,r = 1.0,r = 2.0 and r = 3.0 and all seven weight-
ing functions were used. Figure 10 shows a view along
the power cable, with a non optimal configuration. The
Eigenstreamline is not following the cable to the end
because it moves apart more than 1.0 m from the cable,
resulting in an empty neighborhood during integration.

Best results were achieved by using the ssquare
weighting with r = 2.0 for tensor computation and the
sphquintic weighting with r = 3.0 for the vector inter-
polation. Results show that a more smooth weighting
in the tensor computation and a more local interpolation
weight are a good combination for reconstructing linear
structures. Using the same weighting for tensor compu-
tation and vector interpolation did not work, see Figure
11 (b). The global error of the reconstruction at the end
of the power cable is about 80 cm and needs to be fur-
ther improved. The cable could only be followed using
DOP853 integration. Explicit Euler failed to produce
acceptable results. When comparing Figures 11(a) and
11(c) the global error is almost the same. The main

difference is the local shape of the Eigenstreamline. A
larger vector interpolation radius results in a smoother
curve. Figure 11(c) shows the best reconstruction of
the investigated technique and described parameters.

Figure 9: Overview of the LIDAR data set. The two upper images show the
point cloud as points and as tensor splats (taken from [21]). In the two lower
images points are colored by linearity. Three arrows mark the explicitly user-
specified seeding points and directions of the streamline computation located at
the mid lower power cable (magenta) of the larger power pole.

4 CONCLUSION
A new method of reconstructing power cables, or other
linear structures in general, in point clouds was pre-
sented. The method employs the point distribution
tensor as presented in previous work [21]. Different
weighting functions for the tensor computation and the
interpolation of the major Eigenvector field were im-
plemented and compared. Streamline integration was
verified on artificial test cases and applied to a LIDAR
point cloud dataset acquired from actual observations.
Finally, a power cable was reconstructed and visualized
using this dataset.

Journal of WSCG, Vol.20 228 http://www.wscg.eu

Figure 10: Power cable reconstruction via streamlines. The distribution tensor
was computed using the average r = 2.0 weighting and the vector interpolation
was done with the ssquare r = 1.0 weighting. Top: Points colored by linearity.
Bottom: Tensor splats illustrate the distribution tensor. Streamlines are moving
apart from the power cable and break before they can reconstruct the full 280
m of cable.

(a) Tensor: ssquare r=2, Vectorfield: sphquintic r=1

(b) Tensor: sphquintic r=2, Vectorfield: sphquintic r=2

(c) Tensor: ssquare r=2, Vectorfield: sphquintic r=3

Figure 11: Comparison of different parameters and weighting function com-
binations of the computation, finally resulted in a successfully reconstructed
power cable. The LIDAR point cloud is colored by linearity of the distribution
tensor. The three Eigenvector streamlines reconstruct a 280 m long cable.

5 FUTURE WORK
Other weighting functions for computing the tensor and
doing the interpolation during the streamline integra-
tion need to be tested. Automatic determination of the
optimal combination of weighting functions and also
their parameters will be the goal of further investiga-
tions. Seeding points and directions for computing
the streamlines need also to be chosen automatically,
for example, by taking tensor properties into account.
Following the major Eigenvector of points with high
planarity or sphericity needs to be prevented during
streamline integration. Finally, more datasets should be
explored to stabilize the method. Furthermore, minor
changes of the algorithm would enable streamline inte-
gration in datasets stemming from SPH simulations.

ACKNOWLEDGMENT
Many thanks to Frank Steinbacher for proving the LI-
DAR data. This work was supported by the Aus-
trian Science Foundation FWF DK+ project Compu-
tational Interdisciplinary Modeling (W1227) and grant
P19300. This research employed resources of the Cen-
ter for Computation and Technology at Louisiana State
University, which is supported by funding from the
Louisiana legislature’s Information Technology Initia-
tive. This work was supported by the Austrian Ministry
of Science BMWF as part of the UniInfrastrukturpro-
gramm of the Forschungsplattform Scientific Comput-
ing at LFU Innsbruck.

REFERENCES
[1] W. Benger, H. Bartsch, H.-C. Hege, H. Kitzler,

A. Shumilina, and A. Werner. Visualizing Neu-
ronal Structures in the Human Brain via Diffu-
sion Tensor MRI. International Journal of Neu-
roscience, 116(4):pp. 461–514, 2006.

[2] W. Benger, G. Ritter, and R. Heinzl. The Con-
cepts of VISH. In 4th High-End Visualization
Workshop, Obergurgl, Tyrol, Austria, June 18-
21, 2007, pages 26–39. Berlin, Lehmanns Media-
LOB.de, 2007.

[3] W. Benger and M. Ritter. Using geometric algebra
for visualizing integral curves. In E. M. S. Hitzer
and V. Skala, editors, GraVisMa 2010 - Computer
Graphics, Vision and Mathematics for Scientific
Computing. Union Agency - Science Press, 2010.

[4] W. Benger, M. Ritter, S. Acharya, S. Roy, and
F. Jijao. Fiberbundle-based visualization of a stir
tank fluid. In 17th International Conference in
Central Europe on Computer Graphics, Visualiza-
tion and Computer Vision, pages 117–124, 2009.

[5] T. E. Conturo, N. F. Lori, T. S. Cull, E. Akbu-
dak, A. Z. Snyder, J. S. Shimony, R. C. Mckinstry,
H. Burton, and M. E. Raichle. Tracking neuronal

Journal of WSCG, Vol.20 229 http://www.wscg.eu

fiber pathways in the living human brain. Proc
Natl Acad Sci U S A, 96(18):10422–10427, Aug.
1999.

[6] M. Descoteaux, L. Collins, and K. Siddiqi. A
multi-scale geometric flow for segmenting vascu-
lature in mri. In In Medical Imaging Computing
and Computer-Assisted Intervention, pages 500–
507, 2004.

[7] S. N. E. Hairer and G. Wanner. Solving ordi-
nary differential equations I, nonstiff problems,
2nd edition. Springer Series in Computational
Mathematics, Springer-Verlag, 1993.

[8] L. A. Fernandes and M. M. Oliveira. Real-
time line detection through an improved hough
transform voting scheme. Pattern Recognition,
41(1):299 – 314, 2008.

[9] K. Fukunaga and L. Hostetler. The estimation of
the gradient of a density function, with applica-
tions in pattern recognition. Information Theory,
IEEE Transactions on, 21(1):32 – 40, jan 1975.

[10] D. A. Fulk and D. W. Quinn. An analysis of 1D
smoothed particle hydrodynamics kernels. Jour-
nal of Computational Physics, 126(1):165–180,
1996.

[11] R. C. Gonzalez and R. E. Woods. Digital Im-
age Processing. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2nd edition,
2001.

[12] D. K. Jones. Studying connections in the living
human brain with diffusion mri. Cortex, 44(8):936
– 952, 2008.

[13] Y. Jwa, G. Sohn, and H. B. Kim. Automatic
3d powerline reconstruction using airborne lidar
data. IAPRS, XXXVIII(2004):105–110, 2009.

[14] K. Kraus and N. Pfeifer. Determination of terrain
models in wooded areas with airborne laser scan-
ner data. ISPRS Journal of Photogrammetry and
Remote Sensing, 53(4):193 – 203, 1998.

[15] Z. Li, R. Walker, R. Hayward, and L. Mejias. Ad-
vances in vegetation management for power line
corridor monitoring using aerial remote sensing
techniques. In Applied Robotics for the Power
Industry (CARPI), 2010 1st International Confer-
ence on, pages 1 –6, oct. 2010.

[16] Y. Liu, Z. Li, R. F. Hayward, R. A. Walker, and
H. Jin. Classification of airborne lidar intensity
data using statistical analysis and hough transform
with application to power line corridors. In Digital
Image Computing : Techniques and Applications
Conference (DICTA 2009), Melbourne, Victoria,
December 2009. IEEE Computer Society.

[17] T. Melzer. Non-parametric segmentation of als
point clouds using mean shift. Journal of Applied

Geodesy, 1(3):159–170, 2007.
[18] T. Melzer and C. Briese. Extraction and modeling

of power lines from als point clouds. In Proceed-
ings of 28th Workshop, pages 47–54. Österreichis-
che Computer Gesellschaft, 2004. talk: Austrian
Association for Pattern Recognition (ÖAGM),
Hagenberg; 2004-06-17 – 2004-06-18.

[19] S. Mills, M. Gerardo, Z. Li, J. Cai, R. F. Hay-
ward, L. Mejias, and R. A. Walker. Evaluation
of aerial remote sensing techniques for vegetation
management in power line corridors. IEEE Trans-
actions on Geoscience and Remote Sensing, Oc-
tober 2009.

[20] M. Persson, J. Solem, K. Markenroth, J. Svens-
son, and A. Heyden. Phase contrast mri segmen-
tation using velocity and intensity. In R. Kimmel,
N. Sochen, and J. Weickert, editors, Scale Space
and PDE Methods in Computer Vision, volume
3459 of Lecture Notes in Computer Science, pages
119–130. Springer Berlin - Heidelberg, 2005.

[21] M. Ritter, W. Benger, B. Cosenza, K. Pullman,
H. Moritsch, and W. Leimer. Visual data mining
using the point distribution tensor. In IARIS Work-
shop on Computer Vision and Computer Graphics
- VisGra 2012, Feb-Mar 2012.

[22] F. Steinbacher, M. Pfennigbauer, A. Ulrich, and
M. Aufleger. Vermessung der Gewassersohle - aus
der Luft - durch das Wasser. In Wasserbau in Be-
wegung ... von der Statik zur Dynamik. Beitrage
zum 15. Gemeinschaftssymposium der Wasserbau
Institute TU München, TU Graz und ETH Zürich,
2010.

[23] D. Weinstein, G. Kindlmann, and E. Lundberg.
Tensorlines: advection-diffusion based propaga-
tion through diffusion tensor fields. In Proceed-
ings of the conference on Visualization ’99: cel-
ebrating ten years, VIS ’99, pages 249–253, Los
Alamitos, CA, USA, 1999. IEEE Computer Soci-
ety Press.

[24] C. Westin, S. Peled, H. Gudbjartsson, R. Kikinis,
and F. Jolesz. Geometrical diffusion measures for
mri from tensor basis analysis. In Proceedings of
ISMRM, Fifth Meeting, Vancouver, Canada, page
1742, Apr. 1997.

Journal of WSCG, Vol.20 230 http://www.wscg.eu

6 Discussion

The first part of this section is organized according to three related research di-
rections: line reconstruction, tensor computation, and tensor visualization. The
advantages and limitations of the methods developed and investigated in the scope
of this thesis are discussed, organized per publication. Thereafter, the initially
posed research questions are again compiled and addressed.

Line reconstruction was investigated in the scope of two publications. Initial
ideas were introduced, prototyped, and tested in the scope of a concrete application
scenario in Ritter and Benger (2012)*. Thereafter, the full, automated reconstruc-
tion framework was proposed in Ritter et al. (2021a)∼. Core components of the
method were analyzed in more detail, the robustness with respect to different types
of noise was improved, and process automation was examined.

Ritter and Benger (2012)*: Here, a methodology of computing integral
lines, originally from diffusion tensor magnetic resonance imaging, was transferred
to the different scenario of point cloud reconstruction. Integral lines are computed
based on a tensor neighborhood in meshless data. Streamlines follow the eigenvec-
tor field, successfully reconstructing curved lines in noisy point clouds. Note that
the method operates fully in 3D. Besides a basic, but functional, symplectic Euler,
a high order Runge-Kutta integrator improved the reconstruction errors in an ar-
tificial circle experiment. Further, weighting functions and parameters were tested
and selected based on a real world example, which improved the reconstruction
error. The combination of a quadratic weighting and an SPH kernel of order five
yielded the smoothest, most plausible, result. A cable of a power line, of 280m
length, could be reconstructed in a real world LiDAR data set.

However, the average reconstruction error still was of about 80 cm in the LiDAR
application. Generally, the integration of the eigenvector field in this setup resulted
in reconstruction errors increasing with the line’s length. Also, the reconstruction
of the test case of a sampled rectangle introduced large errors at the corners.
Generally, sharp corners are not well supported by the method. Moreover, the
approach requires considerable user input. Starting points and an initial direction
have to be provided, as well as global values for the tensor analysis radius and

123

124 CHAPTER 6. DISCUSSION

the interpolation radius have to be set. The integration cannot adjust to varying
properties in the points cloud, or adjust to local dominant geometric features.
Multiple continuous lines can be reconstructed, but they do not influence each
other; i.e. lines do not intersect or merge. Also, no line crossings are supported in
the method.

Ritter et al. (2021a)∼: The mentioned line reconstruction was thoroughly
extended to overcome shortcomings of the previous version. The final method is
very robust at low to medium noise levels, and even gives reasonable results in
the presence of very high noise. The method is especially robust to distribution
noise and can overcome data holes. Two- and three-dimensional point clouds can
be processed with the same approach. Generally, sharp corners, varying curva-
ture, varying noise, crossings, and non-manifold lines are supported. Manual user
input has been reduced to a few high-level control parameters. In general, three
key parameters have to be specified; while three additional ones are automatically
initialized, and can be fine tuned if required, see Section 3.3.1. For instance, depen-
dent on the geometry and the noise intensity, it might become necessary to adjust
a parameter that helps in overcoming holes. Furthermore, an automatic starting
point detection has been proposed, which performed well in the real world scenar-
ios of cable reconstruction between small houses. The employed LiDAR dataset
was more challenging than the one used in the previous publication; sampling was
sparser, non manifold lines were present, and more diverse objects were located
closer to the cables, especially at the tree and the roof.

The number of (automatically detected) start points for streamline integration
currently has to be selected by a user. The reconstruction result highly depends
on that input; especially, when the geometry is complex or exhibits high curvature
regions. Sharp corners can be reconstructed; but they are either smoothed out, if
integrated over; or, alternatively they may retain their appearance, if they result
from an intersection of line-lets. Line intersections are generally difficult to recon-
struct in noisy data, as became evident in the Mikado test case. If independent
lines pass by closely, and the jitter noise amplitude is within the range of the line
distances, the streamline integration may jump over to a different line. Moreover,
the reconstruction in such cases is also hampered due to other reasons; on the one
hand, the angle-weighted streamline direction selection would suffer; on the other
hand, the linearity in the multi scale measures decreases due to the proximity of
the other sampled line geometry.

Several alternatives of choosing the integration direction, i.e. computing the
streamline vector field, were analyzed; for instance, giving a stronger preference to
following employed directions in previous steps. However, this led to other draw-
backs, especially at corners and fine-grained geometric details. Nevertheless, note
that the angular weighting term does put preference on a similar direction, since

125

the angle of reference in the term is based on the previous integration direction.
The maximal radius to be used for the multi scale anaylsis is heuristically

estimated based on a minimum distance statistic. Generally, this does not correlate
well to a linear feature size and represents a rough, density dependent heuristic.
Thus, it may be required to manually adjust the parameter for optimal results.
In fact, to obtain the correct maximal radius for the multi scale analysis, a full
multi scale analysis itself actually would have to be carried out in the first place.
Analyzing the current largest multi scale features for a decision on stopping or
continuing was investigated in Section 3.3.6. However, this was not robust to all
parameter variations and geometries. The maximum radius has a high impact on
the run time of the overall reconstruction. Thus, a heuristic estimation yielding
as small maxima as possible was ultimately preferred. Nevertheless, in the LiDAR
example this had to be increased manually. Regarding computation time, the
multi scale analysis is the most costly part in the framework. Computation times
scale non-linearly with the number of points. A large distance query with the
maximal radius is carried out first, yielding (squared) distance sorted points. Then,
tensors and shape factors are computed while shrinking the sorted neighborhood
size. Thus, in terms of computational complexity, an additional factor of the
neighborhood size has to be added. Various methods for performance optimization
regarding the search were presented in Section 4.

Another concern relates to the streamline integration. Reconstructed lines can
be extended for too long, before they reach the stopping distance criterion; espe-
cially, in the presence of outlier noise. In the pruning step, open ended streamlines
are shrunk, until their end is close to a point in the cloud. Presence of outlier
noise points nearby can thus prevent a tight pruning. Further, highly curved re-
gions may only be reconstructed robustly if starting points are seeded on each
side of the curved region, especially when high jitter noise is present. Generally,
the method requires the presence of a sufficient number of samples in the point
cloud. It does not work well for very sparse data; e.g. the circle example requires
more than 10 point samples being present for a reconstruction. In such cases the
integration step size may have to be manually reduced.

Neighborhood tensor computation and optimization was covered in three
publications. Speeding up the computation via a GPU and CPU parallel approach
is investigated in Grasso et al. (2015)*. In contrast to the per point view, a cluster
representation is introduced and analyzed in Schiffner et al. (2014)*. Further, a
technique operating in screen space is examined in Schiffner et al. (2013)*.

Grasso et al. (2015)*: By employing OpenCL, GPU and CPU parallel com-
putation is enabled. Tensors are computed on point clouds in OpenCL kernels.
Therefore, all compute devices can be utilized in a hardware system. Data buckets

126 CHAPTER 6. DISCUSSION

– points within predefined bounding boxes – can be distributed independently on
the available compute devices. Data is duplicated at the bucket’s borders and en-
larged by the tensor radius. Therefore, the buckets are independent and any coarse
synchronization is prevented. The method scales very well for big data sets. Points
are buckets sorted in the OpenCL kernels by hashing and bitonic sorting, which
is matching well to the parallelism provided by GPU hardware. Finally, a speed
up of more than 500 is achieved by the method, when comparing CPU to GPU.
A speed up of 25 results over an earlier CPU implementation. This is remark-
able, as the baseline implementation has already been using OpenMP parallelized
range queries in a kd-tree structure to find point neighbors. It demonstrates the
potential of optimizing algorithms with respect to memory accesses and hardware.
The overhead, due to memory transfers of the points onto the GPU, as well as the
sorted points and tensors from the GPU, is therefore negligible. Different hardware
setups have successfully been utilized.

Still, pre-processing of the data is necessary. It requires a coarse spatial bucket
sort, which is computationally cheap (O(n)). The employed HDF5 data storage
does a two pass approach for the coarse bucket sort. A first pass determines the
buckets’ sizes and a second pass fills the data. As stated above, data is additionally
duplicated in ghost zones at the data bucket borders, which produces an overhead
w.r.t. data space consumption. Data processing worked for the published test
cases, but the algorithms ran into difficulties with much bigger data sets. Random
crashes occurred when processing a large number of data buckets (≥ 3000), with
each of them holding about 2 million points. Further, improvements on the imple-
mentation are necessary to overcome this shortcoming. Further, as with all shader
codes, the computational parts have to be reorganized and written in a ’C-like’
manner.

Schiffner et al. (2014)*: Vertex clustering is employed in an OpenGL com-
pute shader to generate a reduced number of point representatives of a detailed
point cloud. The grid based vertex clustering can be applied to any raw point
data. The population count of cells is evened out by moving points to neighboring
cells, while also taking the planarity shape factor into account. Thus, cells are
optimized for higher planarity values. The tensor and its geometric measures are
computed on the fly. Therefore, the grid borders adjust to the underlying geom-
etry – becoming a curvilinear grid. GPU RAM is directly utilized to hold the
raw data. The geometric representation employed for visualization is computed
as late as possible. A standard data representation for a point was utilized by
three floats resulting in twelve bytes. Many more data points could be loaded into
memory when employing an encoding/decoding technique, by e.g. using simple
Z-curve indices or more advances techniques. Recently, compression rates down
to 0.2% of the original memory size was reported in Schwarz et al. (2019) and a

127

bpp (bits per point) rate of 0.157 in Wang et al. (2020a). This could enable faster
data loading and big data support. As the visual representation is separated from
the underlying data, this allows to adjust to available hardware resources and to
the visualization task. Generally, the clustering technique is a method at a “lower
level” of visualization algorithms. It can be combined with different visual repre-
sentatives, such as splats, surflets, and in-cell quads, and could be further grouped
into cell clusters with higher level representatives.

The proposed redistribution of points exhibits some limitations, however. Since
the move takes place between neighboring cells, several move steps might be neces-
sary to adjust the grid well in inhomogeneously sampled regions of the point cloud.
This is exemplified by the galaxy data set. In the current implementation, all data
needs to be transferred to the GPU memory, before any visualization starts. If
data sets are large, this might create an unacceptable overhead. Some heteroge-
neous systems have shared memory regions – accessible by CPU and GPU – which
could counter this problem. If data becomes very large an out-of-core approach
is necessary. However, as the visual representation is independent from the data
the memory on GPU side can be split in two regions. One holding the represen-
tation for rendering and one for data streaming. Large data can be continuously
streamed into the visual representation. Modern GPUs provide enough memory
for this approach, e.g. up to 24GB1. Further, the clustering not necessarily needs
to be executed dynamically for each frame. Clusters could be cached and reused,
and e.g. recomputed dependent on viewpoint changes.

Schiffner et al. (2013)*: Here, a multi layer depth buffer is utilized for ten-
sor computation in the OpenGL rendering pipeline. Points are unprojected from
screen space and the tensor’s minor eigenvector utilized for shading. Employ-
ing the tensor computation allows for a more robust and smooth normal vector
estimation. This is demonstrated by comparing to other screen space normal
computations based on depth derivatives and cross products. As the method is
executed in screen space at the end of the rendering pipeline, it is independent of
any specialized pre-processing. Diagonal sampling schemes around the fragment
(pixel) of interest yielded smoother shading results.

Generally, the limits of the technique make it applicable e.g. only for overview
visualizations of data stemming from sensor devices. Several fragments (pixels)
need to be covered for smooth results. It highly depends on the point density and
point size of the rendering. Further, it turned out that the performance overhead
for larger sampling counts is quite high. Twenty-five samples already take up to
60ms (including splatting). Nine samples required about 25ms and were neces-
sary for a smooth result in the LiDAR overviews that could also capture the power

1e.g. NVIDIA RTX 3090, with 10496 shader units and 24GB RAM. To compare more hard-
ware specifications, see e.g. https://www.techpowerup.com/gpu-specs

https://www.techpowerup.com/gpu-specs

128 CHAPTER 6. DISCUSSION

line in the data. Still, higher sampling counts would improve the visual quality.
A good trade-off has to be found for a successful application within the screen
density boundaries.

Neighborhood tensor visualization concerns applications of scientific visual-
ization, in contrast to the sections above where computational aspects were the
main interest. This part is focused in the following two publications. In Ritter
et al. (2012)* an existing tensor field visualization method is employed to illustrate
a single scale tensor on artificial and application related point clouds. Ritter et
al. (2021b)∼ discusses the use of multi scale tensor images to reveal geometric
features in point clouds.

Ritter et al. (2012)*: The point cloud neighborhood is encoded as a second
order tensor (or weighted covariance), which is directly compatible to existing ten-
sor field visualization techniques. The tensor splats method of Benger and Hege
(2004) is chosen as it fits to the symmetric and positive definite tensor. A local geo-
metric classification of linearity, planarity, and sphericity is successfully illustrated
by the splats via coloring (green/red) and transparency. It is further exemplified
on artificial test cases. Here, the coupling of transparency and sphericity reduces
visual clutter, as shown in the filled cuboid example. Border surfaces and corners
are highlighted, while inner splats are visually removed. The directional texture
of the splats underlines the major eigenvector for linear regions, thus yielding vi-
sually perceivable lines in the point cloud. This is illustrated by the rectangle and
LiDAR power cable example. The achieved visual line indication was the basis for
the investigation of the geometric line reconstruction framework.

Nevertheless, the approach does not obviously improve the visualization of the
contours in the coast line data set; only the cleared and better separated linear
structures were highlighted. The neighborhood radius has to be set globally by a
user; no initial parameters are set automatically. Thus, considerable user interac-
tion is required to obtain good visual results. Further, the employed red to green
color map may not be optimal for some viewers, e.g. in case of colorblindness.
Other choices would be better distinguishable, as e.g. presented by Wong (2011).
In the LiDAR data geometrically classified regions become quite homogeneous.
Especially, the planar floor should provide more contrast for a better 3D readabil-
ity. Some additional data, such as the LiDAR signal intensity or a shape analysis
at a smaller radius could be included.

Ritter et al. (2021b)∼ : This work relates to Ritter et al. (2021a)∼ and was
used in the reconstruction algorithm development to explore tensor properties on
multiple scales. Therefore, the introduced visualization method allows to illustrate
properties by showing the multi scale geometric measures. Weighting functions,
centroids, and geometric features of the 3D data are such properties. The multi

129

scale feature images (MSFIs) are dependent on these properties. Weighting func-
tions have been explored w.r.t. smoothness and location of extrema in the MSFIs.
The MSFIs also reveal noise amplitudes. On a per point basis the geometric
neighborhood can be read off. The intensity as well as the radii of the features
are illustrated by the colormap. Points can be visually classified as being part of
a cable, roof, or tree; in the demonstrated LiDAR application.

Note that the shape factors are rotationally and scale invariant. Thus, these
measures (and their visualization) could be employed for various tasks, such as
automated clustering or tracking. The step size of the MSFI analysis is based on
a minimum point distance statistic, and thus automatically adjusted.

However, single multi scale features of regions with large sphericity and pla-
narity might not hold sufficient information for certain algorithms or purposes.
Consider e.g. a point of a 3D crossing and a point within homogeneous 3D noise;
both yield a high sphericity over multiple scales and thus are not distinguishable
solely by comparing these features. Despite the multi scale view, other properties
of neighbors may need to be taken into account as well, such as neighbor count or
an angular density.

Reading information from the features and their visualizations requires train-
ing. The cable crossing in the LiDAR case cannot easily be recognized in the
MSFI, without experience. Also note that the MSFI requires a 1D sorting of the
points to become readable. Such a sorting is non trivial for larger and noisy point
clouds. Locally, sorting along the major eigenvector can by carried out. Thus, no
quick overall overview visualization is possible for a large dataset. In the proposed
method, input is required for the sorting; a user manually specifies line probes via
drawing.

The computational bottleneck is the maximum radius range query in the point
cloud neighborhood, as described for Ritter et al. (2021a)∼ above.
Research Questions

1. Is an eigenvector streamline based method on top of the neighborhood tensor
feasible to reconstruct lines in point cloud data?
In a first attempt, a method was developed that could be used to successfully
integrate along the major eigenvectors of a point distribution tensor field al-
lowing to visually follow linear structures in point clouds. A distance error and
a visual inspection was used to evaluate the feasibility as a quality measure.
The initial approach had limitations; the reconstruction error accumulates
during integration; sharp corners are problematic; the radius for the tensor
computation is constant. Using a high order integrator can help to reduce the
error accumulation, but does not improve the results at sharp corners (Ritter
et al., 2012)*. Nevertheless, this initial method could be extended to improve
the results. Therefore, quality error measures were extended by average dis-

130 CHAPTER 6. DISCUSSION

tance and a completeness. In the reconstruction method, the radius for the
eigenvector is chosen dynamically. The neighborhood is adjusted based on
multi scale shape factors of the tensor, opting for radii with dominant linear
features. Secondly, also based on the multi scale feature analysis, starting
points are detected and multiple bidirectional lines integrated. Lines merge
and intersect during a breadth first iteration. Thirdly, an angular direction
term augments the tensor’s eigenvector field. This improves the behavior at
small geometric features, where a small radius linearity minimum vanished
due to jitter noise amplitude at similar scale, or the second maximum be-
comes dominant at very high curvature, such as a corner of less than about
60◦ where the eigenvector will point in the central axis of the corner and, thus,
lead the integration outwards in corner direction. This is illustrated at the in-
ner part of the ears of the bunny in Ritter et al. (2021a)∼. Enforcing the small
scale maximum did not solve this behavior as it led to follow outlier clusters
in higher jitter noise cases. Tuning on automated test cases, on weighting
functions, and on scoring parameters, resulted in a method for robust line
reconstruction. In the end, the second order tensor via streamline integration
for reconstruction is able to create comparable error measures with respect to
a recent line reconstruction method (Ohrhallinger and Wimmer, 2019). It re-
quires a dynamic radius (bandwidth) choice for the eigenvector in combination
with a angular weighted direction.

2. How sensitive is the line reconstruction algorithm to noise? How is it made
robust?
The extended algorithm is quite stable against distribution and outlier noise.
However, jitter noise is the most difficult type. Reconstruction of basic geome-
tries started to fail at noise values of about 6% to 10% of the their bounding
box size (see Section 6.5.2 in Ritter et al. (2021a)∼). Increasing the num-
ber of starting points can remedy this in general. However, in some cases
with very strong jitter noise, non-merging, parallel lines can occur. Further,
using weighting functions in the tensor computation, as well as in the inter-
polation of eigenvectors stabilizes against noise. The introduced Fermi-Dirac
I) weighting function showed improved reconstruction performance. Further,
an automatically adjusted step size for the integration helped in presence of
distribution noise.

3. What is the effect of using different centroids and weighting functions in the
tensor computation?
The shape of the multi scale shape factor graphs are influenced by both these
components. Different weighting functions yield different radii for minima and
maxima of the graphs. Also, the values of the extrema and the overall smooth-
ness of the graphs are affected. The Fermi-Dirac I) weighting function creates

131

extrema at rather small radii, which is desirable in terms of computation time
of the neighborhood searches. It also yields smooth shape factor graphs, which
is beneficial in combination with a geometric median or weighted mean as cen-
troid. The centroids have a further influence on the graphs, as they filter noise;
except for the point distribution tensor. Also, the eigenvector directions of the
tensor are smoothed out, as the centroid is dynamically shifted to the center
of the neighborhood. This has an influence on the score functions; Equations
(7) and (9) in Ritter et al. (2021a)∼. Figure 3.14 illustrates the noise filter-
ing effect of different centroids on start point selection. The PDT leads to
selected points closer to the ground truth data as it prefers centers of noisy
clusters. The PDT is also employed for the noise rate analysis were no noise
should be compensated. In contrast, noise filtering has a positive effect on the
integration direction, thus the PDT performs worst in the parameter runs,
see Section 6.5 in Ritter et al. (2021a)∼. For the reconstruction, the weighted
mean, in combination with a quadratic inverse, showed the best performance.
Other differences can be seen in the scale space at larger radii, e.g. different
strategies need to be employed to detect a maximum analysis radius depen-
dent on the centroid, see Figure 3.15. The geometric median is proposed for
multi scale feature image visualization, because it creates homogeneous and
smooth regions are sharper edges in the multi scale space, see Figure 7 in
Ritter et al. (2021b)∼.

4. What geometric features and details can be reconstructed?
Ten artificial test geometries have been set up for development and evaluation
of the reconstruction from noisy point cloud data, including features such as:
straight and curved lines, varying curvature, 2D and 3D corners (up to 60 ◦),
crossings, and out of plane curvature. All could be successfully reconstructed,
even with added noise. High curvature regions are challenging and can lead to
an outwards integration following the corner’s axis direction. Further, closely
parallel lines may merge to one central line and nearby skew lines may connect.
The respective test cases for this behavior are the wave, bunny, and Mikado
in Ritter et al. (2021a)∼. These cases allow only small amounts of jitter noise
of about 6% to 10% of the bounding box size. Further, the method requires
a proper sampling rate, e.g. more than 10 samples are required for a circle.

5. Can user dependent control parameters be removed to allow a fully automated
reconstruction process?
While the developed framework comprises several parameters, only a handful
are left for a user to adjust; with up to ten in borderline cases. The main user
parameters are (sorted by relevance): number of starting points, maximum
number of integration iterations (thus, length of reconstruction), data hole
size to overcome, pruning distance, merging distance for approaching lines,

132 CHAPTER 6. DISCUSSION

and maximum multi scale analysis radius. A key element of this thesis is
the automatic steering of parts of the framework. Analysis of the multi scale
geometric measures permits selection of optimal neighborhood radii (and di-
rection) as well as integration starting points. A minimum distance analysis
is a second component, especially, to set length related parameters; such as
the integration step size or the increment of the multi scale radius. However,
it was not possible to fully automate the framework. Moreover, the adjust-
ment of the involved parameters require some experience by the user. Finally,
it may not be preferable to remove all user control. An semi automated line
reconstruction assistant tool would allow to better adjust to specific use cases.

6. What is the computational bottleneck and can it be optimized or tackled by
GPU computation?
The key bottleneck is the multi scale tensor computation. The involved neigh-
borhood search is costly. In the proposed reconstruction implementation a
CPU-based octree is employed for acceleration. The maximum radius is used
as a distance query and iteratively shrunk for the centroid, tensor, and shape
factor computation. This can be offloaded to the GPU, but in the multi scale
case, this might not scale as well because of the larger radius. Still, the ap-
proach is directly applicable and extensible to several multi scale iterations
in the tensor computation on the GPU side. A further extension could be
to perform the computation not on a per point basis but on subspaces or
clusters.

7. Can a tensor visualization method stemming from spacetime curvature be em-
ployed to enhance point clouds visually by highlighting its neighborhood prop-
erties?
Tensor shape factors and eigenvectors could successfully be utilized for point
cloud visualizations. Linear directions highlighted by textures yielded visual
indications of linear structure in point clouds. Moreover, the dominant shape
factor of the multi scale analysis can be selected to color point clouds. How-
ever, the benefit of this visualization over other methods has not be evaluated
in user studies. The methods targeted in Schiffner et al. (2013)* and Schiffner
et al. (2014)* allow for a quick inspection of raw point cloud data includ-
ing the geometric measures. A proper highlighting of linear structures, as
demonstrated in Ritter et al. (2012)*, enables an interactive region of interest
selection by a user. In those regions, the computationally expensive auto-
mated line reconstruction could be executed to provide a semi automated line
reconstruction tool for large point cloud data.

7 Conclusion

Starting from a tensor view of a point cloud neighborhood, a second order tensor
was formulated, including a distance weighting. Geometric measures have been
computed to describe the shape of a representative ellipsoid forming a barycentric
coordinate system. First, the tensor as well as its measures have been explored
on a single radius scale. It was observed that this is not sufficient in describing
local geometric features in point sets, as they often are present at different scales.
Thus, the tensor and the geometric measures were extended for multiple scales.
Multi scale geometric measures were then analyzed further. They were employed
in a reconstruction scenario and allowed to automatically identify ’good’ candidate
points to start the reconstruction process. Further, they enabled to find optimal
radii to define a vector field – based on the tensor major eigenvector – for a stream
line based reconstruction.

Moreover, the multi scale geometric measures revealed the influence of em-
ploying different radial distance weighting functions as well the influence of using
different points of reference (centroids) in the tensor computation. Twenty-nine
non parametric as well as one two-parametric weighting functions were evaluated
for tensor computation. The two parameters of the proposed Fermi-Dirac weight-
ing were optimized. Four types of centroids were evaluated: mean, weighted mean,
geometric median, and weighted geometric median. The weighted mean employing
a quadratic inverse was proposed for line reconstruction, as it performed better
for line crossings, and the geometric median was proposed for multi scale feature
visualization.

Computational aspects have been analyzed. The neighborhood search was
identified as a major bottleneck for the tensor computation, independent of its
specific variant. Search trees were developed to speed up the range queries. A first
CPU parallel kd-tree implementation was replaced by an octree, which improved
performance for the employed data sets. Other methods were implemented and
investigated utilizing the GPU, also for different kinds of usage scenarios. A screen
space based tensor computation was integrated into the OpenGL rendering pipeline
to estimate planarity and a normal vector in real time when viewing raw point
cloud data. An OpenGL compute shader was developed to enable real time vertex

133

134 CHAPTER 7. CONCLUSION

clustering based on a uniform grid. This was extended by a computationally
cheap step to even out grid cell population and, thus, morphing the uniform to a
’virtual’ curvi linear grid. For each grid cell then a geometric surface representative
is created and rendered. Here, a surface reconstruction is computed in real time
from raw point clouds for rendering. The planarity geometric measure is employed
in the grid repopulation steps. Another method was introduced based on a uniform
grid. Here, spatial hash keys were computed per point and then keys sorted. A
range query could then directly find the involved grid cell and neighbors along
with the cell registered points. Importantly, a GPU compatible sorting algorithm
was chosen: bitonic sorting. The tensor computation itself was also included into
the GPU codes. OpenCL was chosen as technology to enable compute kernels on
heterogeneous devices – utilizing the maximum possible computational power of a
shared memory and/or distributed system. The heterogeneous approach reached a
speed up of more than 500 on a single workstation with one strong GPU compared
to the first kd-tree based CPU parallel implementation.

Further, the single scale tensor was utilized for visual exploration of particle
and point cloud data sets. A tensor visualization technique originally developed for
diffusion tensor magnetic resonance imaging was now driven by the neighborhood
tensor to enhance the visualization. It was compared to simple color mapped point
visualizations in data sets stemming from astrophysics simulations on cosmolog-
ical evolution. The tensor visualization helped to better identify the geometric
distribution of points in a wind tunnel SPH simulation, where galaxy clusters
move through the inter cluster medium gas. Linearly distributed point regions
could be enhanced, which also correlated to a higher star birth rate. More visual
exploration was carried out on geoscientific data, i.e. on airborne LiDAR scans.
Here, the visualization clearly highlighted linear and planar regions; high voltage
power line cables and the ground floor were visually enhanced. As an extension
to the power line visualization a reconstruction algorithm was prototyped inspired
by fiber tracking of the MRI diffusion tensor. The visually extracted power cable
was now reconstructed as a geometric line.

The line reconstruction algorithms were revised and extended by the multi scale
tensor. The new algorithm removed user input that was required before and also
served as a test bed for in depth analysis, e.g., on weighting function, centroids,
numerical integration schemes, interpolation methods, vector field variants, auto-
mated radius selection, and noise rate estimation. Several test geometries were
set up to challenge the method by distinct geometric features of lines, such as
constant and varying curvature, sharp corners, and crossing. Additionally, point
disturbances were introduce to model uncertainties in data capturing by different
types of noise and data holes. Error measures were developed to evaluate algorith-
mic performance systematically. The method identifies starting points and grows

7.1. FUTURE WORK 135

bidirectional line lets following linear structure of a points set. Line lets merge
and intersect to form the finally reconstructed line. The results were compared
to recent publications in line reconstruction. They are comparable and the in-
troduced method was up to thirty times faster, depending on the point set to be
reconstructed. Further, our method works in 3D.

Finally, a tool was created to enable the visual exploration of the multi scale
geometric measures in arbitrary point clouds. A visualization technique of color
mapped multi scale feature images is introduced. Such images can be inspected
interactively on line probes as well as graph plots of the geometric measures on
selected points. The images are also utilized to present the influence of the afore-
mentioned tensor parameters visually (weighting functions, centroids, incremental
choice). They provide a rotation invariant multi scale feature for any point of a
point cloud or probe location.

In the discussion the advantages and the limits of the methods for each pub-
lication were highlighted and finally the research questions were addressed and
shortly discussed. Ultimately, a line reconstruction method based on a second
order multi scale tensor has been developed and investigated thoroughly. It is
comparable to recent other developments and is suited for other use cases and has
different properties, such as support for higher noise rates, crossings and 3D lines.
The bottleneck of the tensor computation has been optimized by grid hashing, ver-
tex clustering, and screen space sampling, also, utilizing GPU hardware. Finally,
visualization techniques have been proposed to enhance point cloud visualization
built on the neighborhood tensor’s (multi scale) properties by coloring, shading,
and textured splatting to either highlight regions of high linearity, enable quick
overview visualization of raw data, or inspect multi scale features.

7.1 Future Work

Future work could be directed at improving and further exploring the geometric
line reconstruction. Alternative stopping criteria of the integration are required in
the LiDAR application, as shown in Ritter et al. (2021a)∼. Instead of an eigenvec-
tor streamline a geodesic could be computed and, thus, the neighborhood tensor
interpreted as a spacetime curvature. Besides solving a second order differential
equation, derivatives of the tensor field need to be computed, which are required
for the involved Christoffel symbols. Currently, the biggest performance loss is lo-
cated in the multi scale tensor computation and especially computing the geometric
median. Other algorithms to compute or estimate the median can be evaluated,
e.g. using methods presented in Cohen et al. (2016). Also, as mentioned at the end
of Section 3.3.6, a better estimation of a maximum stopping radius for the multi
scale analysis could improve performance. It need not be chosen globally for all

136 CHAPTER 7. CONCLUSION

points and could be extended to locally different maximum radii. Further speed up
could be achieved by removing the angular weighted direction computation dur-
ing stream line integration. Maybe this could also be shifted into the parallelized
pre-computation step; e.g. by pre-evaluating for a limited number of quantized ref-
erence directions, or by pre-evaluating with reference to the neighborhood tensor’s
eigenvector.

Further work can also be spent on the weighting functions. Axial symmetric
and non isotrop functions could be employed instead of homogeneous radial ones
to favor certain directions. This would require a two pass computation, but could
e.g. further improve pre-selected directions, and allow to use a faster centroid
variant. Also, instead of growing the radius of the weighting kernel, e.g. the Fermi-
Dirac kernel could be grown by the parameter m. This could improve the multi
scale graphs as the decreasing kernel region is not scaled. Scaling of other kernels
could also be prevented by applying it to the other ring of the neighborhood.

The line reconstruction could be extended to surface reconstruction, e.g. by
growing radial surflets or wave fronts from high planarity locations, or by con-
necting detected edge lines or cross sections. Here, also instead of employing a
streamline of the eigenvector a geodesic of the tensor could be investigated.

The whole multi scale pre-computation can be offloaded onto the GPU; e.g. em-
ploying OpenGL compute shaders, OpenCL, or SYCL1. This will influence algo-
rithmic choices to optimize the GPU’s memory accesses. Besides faster computa-
tions time, this would enable the multi scale analysis and line reconstruction to be
used as a basis for other algorithms.

It might make sense to combine the overall method of streamline integration
with a sphere fitting or regression method such as employed in Pauly et al. (2003)
or Ohrhallinger and Wimmer (2019). The streamlines could overcome regions with
higher noise rates and be used as region and bandwidth selection for regression.
The topology and curvature of the connected streamlines can help to find segments
for a piece wise regression, allowing for non manifold geometries.

Broader directions to continue are on applying the multi scale tensor and geo-
metric measures on other classes of point cloud algorithms such as classification,
point clustering, segmentation, or 3D tracking. Identifying robust locations for
tracking would need to be compared to existing methods. Further, the multi scale
graphs would fit into machine learning frameworks as feature vectors.

The work on real time point cloud clustering and drawing cell representatives,
as carried out in Schiffner et al. (2014)*, could be extended by geometric represen-
tatives for linear and volumetric shape factors, such as connecting and blending
between cones (linear), planes (planar), and spheres (spherical). The blending of
such different objects, may provide a shaded geometrical abstract representation

1www.khronos.org/sycl

www.khronos.org/sycl

7.1. FUTURE WORK 137

of a detailed point clouds and could be enriched by color coding to encode accumu-
lated data per cluster cell, such as density or signal intensities. Such an approach
could provide an adaptive level of detail: structures viewed from far distance are
simplified by e.g. cones and become separated into detailed parts when zooming
in. At close ups, finally, splatted points could be blended in to inspect data at a
fine grain level.

As indicated in the discussion, point cloud compression could enable support
for larger point clouds, or could speed up memory transfers. A method with fast
decompression would need to be identified and can then be directly included in
the compute or vertex shader.

The noise rate nR as introduced in Ritter et al. (2021a)∼ could be further
improved. The 3D crossing with no noise still results in a low noise rate, due to
the utilized average of all sphericity minima. Maybe employing statistical quantiles
or including the multi scale radius would be feasible options as well as investigating
shape factor differences over neighbors. Finally, more investigation should be spent
on the 4th order multi scale tensor. Geometric measure dependent weighting and
the correct tensor analysis could be an alternative strategy for the here employed
multi scale graph based analysis. Especially, for the start point detection and
radius scale selection. Also, the representation by the 15 components would be
more compact than the multi scale second order tensors and measures.

138 CHAPTER 7. CONCLUSION

8 Acknowledgements

I thank Sabine Schindler and Werner Benger for getting me interested and started
at the doctoral school “computationally interdisciplinary modelling” for a PhD
project.

I want to thank Günter Hofstetter for his trust, support, and integration into his
research group and teaching team, although the direction of specialization drifted
away from the original ideas. Special thanks to my final supervisor Matthias
Harders for offering a place in his research group. Further, for his guidance, help,
collaboration, precise corrections, suggestions, and for asking the right questions.
Both carry a real spirit of science, always favor high quality standards, while being
supportive in a productive environment.

Special thanks to Daniel Schiffner for extensive discussions, creative exchanges,
fruitful collaborations, the possibility of an external research visit, corrections, and
an always critical view on things. Special thanks to my brother Georg Ritter who
was always an anchor for support. He stepped in to help over difficult content,
such as, showing that there is no guarantee for correctness in publications.

Thanks to my fellows at Airborne Hydromapping and, especially, the CEO
Frank Steinbacher. The combination of Astrophysics and airborne LiDAR scan-
ning originally started the research and finally yielded a story-line for the thesis.
Thank you for the support, collaborations, exchanges, and for providing data
for analysis. Thanks to the fellows of the doctoral school. The interdisciplinary
setup was widening the horizon and enabled interesting collaborations and publi-
cations with experts in different fields of science, among them: Alexander Kaiser,
Ivan Grasso, Dominik Steinhauser, David Unteregger, Vincent de Groof, Antti
Koselka, and Stefan Huber. Thanks to the fellows at the research group of struc-
tural mechanics. The scientific/teaching related exchanges, blackboard sessions,
and relaxed working environment was a great experience; among them Benjamin
Fuchs, Peter Gamnitzer, Nikolaus Fleischhacker, and Alexander Dummer. Finally,
many thanks to my colleagues at the interactive graphics and simulation group.
Especially, in the last very intense phase including corona lock-downs, distance
teaching, and final writing up. I enjoyed the scientific exchanges with Fernando
Zorilla, the discussions with Anatoli Sianov, and the collaboration with Evgeni

139

140 CHAPTER 8. ACKNOWLEDGEMENTS

Zuenko.
Further, thanks to Nikolaus Rauch for his teaching support, help on content

searches, many discussions, and his critical views. Last but not least, thanks to
Stefan Spiss for pushing the final writing/coding/evaluation sprints to its limits.
The coffee meetings with both were an anchor in the curfew times.

Biggest thanks go to my wonderful wife Sonja Herdlinger-Ritter with her loupe-
view on details, corrections, her support, coffee celebrating work-sessions as well
as inspiring walks, and carrying all costs of such a project.

Bibliography

[Abbasloo et al. 2016] Abbasloo, A. ; Wiens, V. ; Hermann, M. ; Schultz,
T.: Visualizing Tensor Normal Distributions at Multiple Levels of Detail. In:
IEEE Transactions on Visualization and Computer Graphics 22 (2016), Nr. 1,
p. 975–984

[Alexa et al. 2001] Alexa, Marc ; Behr, Johannes ; Cohen-Or, Daniel ;
Fleishman, Shachar ; Levin, David ; Silva, Claudio T.: Point Set Surfaces.
In: Proceedings of the Conference on Visualization ’01. USA : IEEE Computer
Society, 2001

[Basser 1998] Basser, Peter: Fiber-tractography via diffusion tensor MRI. In:
Proc International Society for Magnetic Resonance in Medicine (1998)

[Basser et al. 2000] Basser, Peter ; Pajevic, Sinisa ; Pierpaoli, Carlo ; Duda,
Jeffrey ; Aldroubi, Akram: In vivo fiber tractography using DT-MRI data.
In: Magnetic Resonance in Medicine 44 (2000), p. 625–632

[Batcher 1968] Batcher, Kenneth: Sorting Networks and Their Applications.
In: Proceedings of the April 30–May 2, 1968, Spring Joint Computer Conference,
Association for Computing Machinery, 1968, p. 307–314

[Beck and Sabach 2015] Beck, Amir ; Sabach, Shoham: Weiszfeld’s Method:
Old and New Results. In: Journal of Optimization Theory and Applications 164
(2015), January, Nr. 1, p. 1–40

[Bender et al. 2014] Bender, Jan ; Müller, Matthias ; Otaduy, Miguel A. ;
Teschner, Matthias ; Macklin, Miles: A Survey on Position-Based Simu-
lation Methods in Computer Graphics. In: Comput. Graph. Forum (2014),
p. 228–251

[Benger 2004] Benger, Werner: Visualization of General Relativistic Tensor
Fields via a Fiber Bundle Data Model, FU Berlin, Ph.D. thesis, 2004

[Benger et al. 2006] Benger, Werner ; Bartsch, Hauke ; Hege, Hans-
Christian ; Kitzler, Hagen ; Shumilina, Anna ; Werner, Annett: Visu-
alizing Neural Structures in the Human Brain via Diffusion Tensor MRI. In:
Intern Journ of Neuroscience 116 (2006), Nr. 4, p. 461–514

[Benger et al. 2012] Benger, Werner ; Haider, Markus ; Höller, Harald ;
Steinhauser, Dominik ; Stöckl, Josef ; Cosenza, Biagio ; Ritter, Marcel:

141

142 BIBLIOGRAPHY

Visualization Methods for Numerical Astrophysics. In: Astrophysics. Inte-
chOpen, 2012, Chap. 12

[Benger and Hege 2004] Benger, Werner ; Hege, Hans-Christian: Tensor
Splats. In: Conference on Visualization and Data Analysis 2004, Proceedings
of SPIE Vol. #5295, 2004, p. 151–162

[Benger et al. 2004] Benger, Werner ; Ritter, Georg ; Heinzl, René: The
Concepts of VISH. In: In 4th High-End Visualization Workshop, 2004, p. 26–39

[Bergeaud and Mallat 1998] Bergeaud, François ; Mallat, Stéphane: Match-
ing Pursuit of Images. In: Signal and Image Representation in Combined Spaces
Volumne 7. Academic Press, 1998, p. 285 – 300

[Berger et al. 2013] Berger, Matthew ; Levine, Joshua A. ; Nonato, Luis G. ;
Taubin, Gabriel ; Silva, Claudio T.: A Benchmark for Surface Reconstruction.
In: ACM Transactions on Graphics 32 (2013), p. 20:1–20:17

[Berkmann and Caelli 1994] Berkmann, Jens ; Caelli, Terry: Computation
of Surface Geometry and Segmentation Using Covariance Techniques. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 16 (1994), Nr. 11,
p. 1114–1116

[Brackbill et al. 1988] Brackbill, Jeremiah ; Kothe, Douglas ; Ruppel, Hans:
Flip: A low-dissipation, particle-in-cell method for fluid flow. In: Computer
Phys. Comm. 48 (1988), p. 25 – 38

[Brannon 2018] Brannon, Rebecca: Voigt and Mandel components. In: Rota-
tion, Reflection, and Frame Changes. IOP Publishing, 2018, p. 26–1 to 26–20

[Burt et al. 2009] Burt, James ; Barber, Gerald ; Rigby, David: Elementary
Statistics for Geographers. 3rd. The Guilford Press, 2009

[Cohen et al. 2016] Cohen, Michael ; Lee, Yin T. ; Miller, Gary ; Pachocki,
Jakub ; Sidford, Aaron: Geometric Median in Nearly Linear Time. p. 9–21.
In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Com-
puting, Association for Computing Machinery, 2016

[Daropoulos et al. 2020] Daropoulos, Viktor ; Augustin, Matthias ; Weick-
ert, Joachim: Sparse Inpainting with Smoothed Particle Hydrodynamics. 2020.
– arXiv – 2011.11289

[Devore et al. 2013] Devore, Ronald ; Petrova, Guergana ; Hielsberg,
Matthew ; Owens, Luke ; Clack, Billy: Processing Terrain Point Cloud
Data. In: SIAM Journ. of Imaging Sciences 6 (2013), p. 1–31

[Dormand and Prince 1980] Dormand, John ; Prince, Pete: A family of
embedded Runge-Kutta formulae. In: Journal of Computational and Applied
Mathematics 6 (1980), Nr. 1, p. 19 – 26

[Foix et al. 2011] Foix, Sergi ; Alenya, Guillem ; Torras, Carme: Lock-in
Time-of-Flight Cameras: A Survey. In: IEEE Sensors Jour. 11 (2011), Nr. 9,
p. 1917ff

BIBLIOGRAPHY 143

[glm 2017] Groovounet, Christophe: OpenGL Mathematics. 2017. – https:
//glm.g-truc.net

[Grasso et al. 2015] Grasso, Ivan ; Ritter, Marcel ; Cosenza, Biagio ;
Benger, Werner ; Hofstetter, Günter ; Fahringer, Thomas: Point Distri-
bution Tensor Computation on Heterogeneous Systems. In: Procedia Computer
Science 51 (2015), p. 160 – 169

[Guennebaud and Gross 2007] Guennebaud, Gaël ; Gross, Markus: Algebraic
Point Set Surfaces. 26 (2007), Nr. 3

[Hairer et al. 1993] Hairer, Ernst ; Nørsett, Syvert ; Wanner, Gerhard:
Solving Ordinary Differential Equations. 2nd. Springer Series in Comput. Math.,
1993

[HDF5 2020 accessed 2020] HDF5: HDF5. accessed 2020. – https://www.
hdfgroup.org

[Hoppe et al. 1992] Hoppe, Hugues ; DeRose, Tony ; Duchamp, Tom ; Mc-
Donald, John ; Stuetzle, Werner: Surface Reconstruction from Unorganized
Points. In: SIGGRAPH Comput. Graph. 26 (1992), juli, Nr. 2, p. 71–78. – ISSN
0097-8930

[Huang et al. 2013] Huang, Hui ; Wu, Shihao ; Cohen-Or, Daniel ; Gong,
Minglun ; Zhang, Hao ; Li, Guiqing ; Chen, Baoquan: L1-Medial Skeleton of
Point Cloud. In: ACM Trans. Graph. 32 (2013), Nr. 4

[Husselmann and Hawick 2012] Husselmann, Alwyn ; Hawick, Ken: Spatial
Data Structures, Sorting and GPU Parallelism for Situated-agent Simulation
and Visualisation. In: Proc. Int. Conf. on Modelling, Simulation and Visualiza-
tion Methods, 2012

[imgui 2017] Ocornut, Omar: imgui. 2017. – https://github.com/ocornut/
imgui

[Kolb and Whisaw 2015] Kolb, Bryan ; Whisaw, Ian: Fundamentals of Human
Neuropsychology. 7th. Worth Publishers, Inc., 2015

[Kuhn and Kuenne 1962] Kuhn, Harold ; Kuenne, Robert: An Efficient Algo-
rithm for the Numerical Solution of the Generalized Weber Problem in Spatial
Economixs. In: Journal of Regional Science 4 (1962), Nr. 2, p. 21–33

[Lejemble et al. 2020] Lejemble, Thibault ; Mura, Claudio ; Barthe, Loïc ;
Mellado, Nicolas: Persistence Analysis of Multi-scale Planar Structure Graph
in Point Clouds. In: Computer Graphics Forum 39 (2020), p. 35–50

[Lin et al. 2014] Lin, Chao-Hung ; Chen, Jyun-Yuan ; Su, Po-Lin ; Chen,
Chung-Hao: Eigen-feature analysis of weighted covariance matrices for LiDAR
point cloud classification. In: ISPRS Journal of Photogrammetry and Remote
Sensing 94 (2014)

[Lin et al. 2005] Lin, Hongwei ; Chen, Wei ; Wang, Guojin: Curve reconstruc-
tion based on an interval B-spline curve. In: The Visual Computer 21 (2005),

https://glm.g-truc.net
https://glm.g-truc.net
https://www.hdfgroup.org
https://www.hdfgroup.org
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui

144 BIBLIOGRAPHY

p. 418–427
[Liu et al. 2020] Liu, Li ; Ouyang, Wanli ; Wang, Xiaogang ; Fieguth, Paul ;

Chen, Jie ; Liu, Xinwang ; Pietikäinen, Matti: Deep Learning for Generic
Object Detection: A Survey. In: International Journal of Computer Vision 128
(2020), p. 261–318

[Lu et al. 2017] Lu, Xuequan ; Chen, Wenzhi ; Schaefer, Scott: Robust mesh
denoising via vertex pre-filtering and L1-median normal filtering. In: Computer
Aided Geometric Design 54 (2017), p. 49 – 60

[Macklin and Müller 2013] Macklin, Miles ; Müller, Matthias: Position
Based Fluids. In: ACM Transactions on Graphics 32 (2013), Nr. 4

[Mathews et al. 2010] Mathews, Edwin ; Benger, Werner ; Ritter, Marcel:
Implementation of an Algorithm for Approximating the Curvature Tensor on a
Triangular Surface Mesh in the Vish Environment. In: Proc. of the 6th High-End
Vis. Workshop, 2010

[McIvor and Valkenburg 1997] McIvor, Alan ; Valkenburg, Robert: A
comparison of local surface geometry estimation methods. In: Machine Vision
and Applications 10 (1997), Nr. 1, p. 17–26

[Mellado et al. 2012] Mellado, Nicolas ; Guennebaud, Gaël ; Barla, Pas-
cal ; Reuter, Patrick ; Schlick, Christophe: Growing Least Squares for the
Analysis of Manifolds in Scale-Space. In: Computer Graphics Forum 31 (2012),
p. 1691–1701

[meson 2017] Pakkanen, Jussi: The Meson Build System. 2017. – http:
//mesonbuild.com

[Monaghan 1988] Monaghan, Joseph: An introduction to SPH. In: Computer
Physics Communications 48 (1988), Nr. 1, p. 89 – 96

[Monaghan 2005] Monaghan, Joseph: Smoothed particle hydrodynamics. In:
Reports on Progress in Physics 68 (2005), Nr. 8, p. 1703

[Natale et al. 2010] Natale, Donald ; Baran, Matthew ; Tutwiler, Richard:
Point cloud processing strategies for noise filtering, structural segmentation, and
meshing of ground-based 3D Flash LIDAR images. In: 2010 IEEE 39th Applied
Imagery Pattern Recognition Workshop (AIPR), Oct 2010, p. 1–8

[Ohrhallinger and Wimmer 2018] Ohrhallinger, Stefan ; Wimmer, Michael:
StretchDenoise: Parametric Curve Reconstruction with Guarantees by Sepa-
rating Connectivity from Residual Uncertainty of Samples. In: Proc. of the
26th Pacific Conf. on Computer Graphics and Applications: Short Papers, Eu-
rographics Association, 2018, p. 1–4

[Ohrhallinger and Wimmer 2019] Ohrhallinger, Stefan ; Wimmer, Michael:
FitConnect: Connecting Noisy 2D Samples by Fitted Neighborhoods. In: Com-
puter Graphics Forum 38 (2019), Nr. 1, p. 126–137

[Ohtake et al. 2005] Ohtake, Yutaka ; Belyaev, Alexander ; Seidel, Hans-

http://mesonbuild.com
http://mesonbuild.com

BIBLIOGRAPHY 145

Peter: An Integrating Approach to Meshing Scattered Point Data. In: Proc. of
the 2005 ACM Symposium on Solid and Physical Modeling, 2005, p. 61–69

[Öztürk and Hasirci 2013] Öztürk, Mehmet ; Hasirci, Zeynep: A novel
method for thinning branching noisy point clouds. In: Turkish Journal of Elec-
trical Engineering & Computer Sciences 21 (2013), p. 2239–2258

[Pahl and Damrath 2000] Pahl, Peter ; Damrath, Rudolf: Mathematische
Grundlagen der Ingenieurinformatik. Springer-Verlag Berlind Heidelberg, 2000

[Pauly et al. 2002] Pauly, Mark ; Gross, Markus ; Kobbelt, Leif: Efficient
Simplification of Point-Sampled Surfaces. In: Proceedings of the Conference on
Visualization ’02, 2002 (VIS ’02), p. 163–170

[Pauly et al. 2003] Pauly, Mark ; Keiser, Richard ; Gross, Markus: Multi-
scale Feature Extraction on Point-Sampled Surfaces. In: Computer Graphics
Forum 22 (2003), Nr. 3, p. 281–289

[Pauly et al. 2006] Pauly, Mark ; Kobbelt, Leif ; Gross, Markus: Point-
Based Multiscale Surface Representation. In: ACM Transactions on Graphics
25 (2006), p. 177–193

[Penner 2020] Penner, Robert: Easing Functions. 2020. – http://www.
robertpenner.com/easing

[Peters et al. 2011] Peters, Hagen ; Schulz-Hildebrandt, Ole ; Lutten-
berger, Norbert: Fast in-place, comparison-based sorting with CUDA: a study
with bitonic sort. In: Concurrency and Computation: Practice and Experience
23 (2011), Nr. 7, p. 681–693

[Philsu and Hyoungseok 2010] Philsu, Kim ; Hyoungseok, Kim: Point Or-
dering with Natural Distance Based on Brownian Motion. In: Mathematical
Problems in Engineering (2010)

[Pourahmadi 2013] Pourahmadi, Mohsen: Covariance Matrices in High-
Dimensional Covariance Estimation. p. 45–96. In: High-Dimensional Covari-
ance Estimation, John Wiley & Sons, Ltd, 2013. – ISBN 9781118573617

[Qi et al. 2017] Qi, Charles ; Yi, Li ; Su, Hao ; Guibas, Leonidas: Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space.
In: Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017,
p. 5105–5114

[Reif 1965] Reif, Frederick: Fundamentals of Statistical and Thermal Physics.
Tokyo : McGraw Hill, 1965

[Ritter 2009] Ritter, Marcel: Introduction to HDF5 and F5 / Center for
Computation and Technology, Lousiana State University. 2009 (CCT-TR-2009-
13). – Research Report

[Ritter 2011] Ritter, Marcel: Geodesics in Numerical Space Times. Verlag Dr.
Müller, 2011

[Ritter 2021] Ritter, Marcel: MssfReconstruct. 2021. –

http://www.robertpenner.com/easing
http://www.robertpenner.com/easing

146 BIBLIOGRAPHY

github.com/gileoo/MssfReconstruct
[Ritter and Benger 2010] Ritter, Marcel ; Benger, Werner: Visualizing Co-
ordinate Acceleration and Christoffel Symbols. In: IADIS Computer Graphics,
Visualization, Computer Vision and Image Processing 2010 (CGVCVIP 2010)
(2010)

[Ritter and Benger 2012] Ritter, Marcel ; Benger, Werner: Reconstructing
Power Cables From LIDAR Data Using Eigenvector Streamlines of the Point
Distribution Tensor Field. In: Journal of WSCG 20 (2012), Nr. 3, p. 223–230

[Ritter et al. 2012] Ritter, Marcel ; Benger, Werner ; Cosenza, Biagio ;
Pullman, Keera ; Moritsch, Hans ; Leimer, Wolfgang: Visual Data Mining
Using the Point Distribution Tensor. In: VisGra - ICONS 2012, IARIA, 2012,
p. 218–222

[Scharstein et al. 2001] Scharstein, Daniel ; Szeliski, Richard ; Zabih,
Ramin: A taxonomy and evaluation of dense two-frame stereo correspondence
algorithms. In: Proceedings IEEE Workshop on Stereo and Multi-Baseline Vi-
sion (SMBV 2001), 2001

[Schiffner et al. 2013] Schiffner, Daniel ; Ritter, Marcel ; Benger, Werner:
Fast Normal Approximation of Point Clouds in Screen Space. In: WSCG 2013
Conf. on Computer Graphics, Visualization and Computer Vision Communica-
tion Paper Proceedings, 2013

[Schiffner et al. 2014] Schiffner, Daniel ; Ritter, Marcel ; Steinhauser, Do-
minik ; Benger, Werner: Using Curvilinear Grids to Redistribute Cluster Cells
for Large Point Clouds. In: Proceedings of SIGRAD 2014, Visual Computing,
2014

[Schiffner et al. 2015] Schiffner, Daniel ; Stockhausen, Claudia ; Ritter,
Marcel: Surfaces for Point Clouds using Non-Uniform Grids on the GPU. In:
WSCG 2015 Conference on Computer Graphics, Visualization and Computer
Vision Communication Paper Proceedings, 2015

[Schürmann 2014] Schürmann, Tim: Meson - a new build system. In: Linux
Magazine 166 (2014), Sep. – http://www.linux-magazine.com/Issues/2014/
166/Meson-Build-System

[Schwarz et al. 2019] Schwarz, Sebastian ; Preda, Marius ; Baroncini, Vit-
torio ; Budagavi, Madhukar ; Cesar, Pablo ; Chou, Philip ; Cohen, Robert ;
Krivokuća, Maja ; Lasserre, Sebastien ; Li, Zhu ; Llach, Joan ; Mam-
mou, Khaled ; Mekuria, Rufael ; Nakagami, Ohji ; Siahaan, Ernestasia ;
Tabatabai, Ali ; Tourapis, Alexis ; Zakharchenko, Vladyslav: Emerging
MPEG Standards for Point Cloud Compression. In: IEEE Journal on Emerging
and Selected Topics in Circuits and Systems 9 (2019), Nr. 1, p. 133–148

[semver 2017] Preston-Werner, Tom: Semantic Versioning 2.0.0. 2017. –
http://semver.org

https://github.com/gileoo/MssfReconstruct
http://www.linux-magazine.com/Issues/2014/166/Meson-Build-System
http://www.linux-magazine.com/Issues/2014/166/Meson-Build-System
http://semver.org

BIBLIOGRAPHY 147

[Sheshappanavar and Kambhamettu 2020] Sheshappanavar, Shivanand ;
Kambhamettu, Chandra: A Novel Local Geometry Capture in Pointnet++
for 3D Classification. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2020, p. 1059–1068

[Skala 2012] Skala, Vaclav: Radial Basis Functions for High Dimensional
Visualization. In: VisGra - ICONS 2012, IARIA, 2012, p. 218–222

[Skala 2017] Skala, Vaclav: RBF Interpolation with CSRBF of Large Data
Sets. In: Procedia Computer Science 108 (2017), p. 2433 – 2437. – International
Conference on Computational Science, ICCS 2017

[Solenthaler and Pajarola 2009] Solenthaler, Barbara. ; Pajarola, Renato:
Predictive-Corrective Incompressible SPH. In: ACM SIGGRAPH 2009 Papers,
2009

[Steinbacher et al. 2012] Steinbacher, Frank ; Pfennigbauer, Martin ; Au-
fleger, Markus ; Ullrich, Andreas: High Resolution Airborne ShallowWater
Mapping. In: ISPRS-Intern. Arch. of the Photogr., Remote Sens. and Spatial
Inform. Sciences XXXIX-B1 (2012), p. 55–60

[Sulsky et al. 1994] Sulsky, Deborah ; Chen, Zhen ; Schreyer, Howard:
A particle method for history-dependent materials. In: Computer Methods in
Applied Mechanics and Engineering 118 (1994), Nr. 1, p. 179 – 196

[Syme et al. 2015] Syme, Don ; Granicz, Adam ; Cisternino, Antonio: Expert
F# 4.0. 4th. New York : Apress Media, 2015. – ISBN 978-1484207413

[Taubin 1995] Taubin, Gabriel: Estimating the Tensor of Curvature of a Surface
from a Polyhedral Approximation. In: Proceedings of the Fifth International
Conference on Computer Vision, IEEE Computer Society, 1995 (ICCV ’95)

[Toth and Jóźkòw 2016] Toth, Charles ; Jóźkòw, Grzegorz: Remote sensing
platforms and sensors: A survey. In: ISPRS Journal of Photogrammetry and
Remote Sensing 115 (2016), p. 22ff

[Wang et al. 2020a] Wang, Jianqiang ; Ding, Dandan ; Li, Zhu ; Ma, Zhan:
Multiscale Point Cloud Geometry Compression. 2020. – arXiv – 2011.03799

[Wang et al. 2020b] Wang, Xinlei ; Qiu, Yuxing ; Slattery, Stuart R. ; Fang,
Yu ; Li, Minchen ; Zhu, Song-Chun ; Zhu, Yixin ; Tang, Min ; Manocha,
Dinesh ; Jiang, Chenfanfu: A Massively Parallel and Scalable Multi-GPU
Material Point Method. In: ACM Transactions on Graphics 39 (2020)

[Wei Shen et al. 2015] Wei Shen ; Xinggang Wang ; Yan Wang ; Xi-
ang Bai ; Zhang, Z.: DeepContour: A deep convolutional feature learned
by positive-sharing loss for contour detection. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, p. 3982–3991

[Weinmann et al. 2015] Weinmann, Martin ; Jutzi, Boris ; Hinz, Stefan ;
Mallet, Clément: Semantic point cloud interpretation based on optimal neigh-
borhoods, relevant features and efficient classifiers. In: ISPRS Journal of Pho-

148 BIBLIOGRAPHY

togrammetry and Remote Sensing 105 (2015), p. 286 – 304
[Weiszfeld 1937] Weiszfeld, Endre: Sur le point pour lequel la Somme des
distances de n points donnés est minimum. In: Tohoku Mathematical Journal,
First Series 43 (1937), p. 355–386

[Wendland 1995] Wendland, Holger: Piecewise polynomial, positive definite
and compactly supported radial functions of minimal degree. In: Adv Comput
Math 4 (1995), p. 389–396

[Wendland 2005] Wendland, Holger: Scattered Data Approximation. Cam-
bridge University Press, 2005

[Westin et al. 2002] Westin, Carl-Fredrik ; Maier, Stephan ; Mamata, Hat-
suho ; Nabavi, Arya ; Jolesz, Ferenc ; Kikinis, Ron: Processing and visu-
alization for diffusion tensor MRI. In: Medical Image Analysis 6 (2002), 2002
Jun, Nr. 2, p. 93–108

[Westin et al. 1997] Westin, Carl-Fredrik ; Peled, Sharon ; Gudbjartsson,
Hákon ; Kikinis, Ron ; Jolesz, Ferenc: Geometrical diffusion measures for MRI
from tensor basis analysis. In: Proceedings of ISMRM, 5th Meeting, Canada, Apr
1997, p. 1742

[Willmott 2011] Willmott, Andrew: Rapid Simplification of Multi-Attribute
Meshes. In: Proc. of the ACM SIGGRAPH Symposium on High Performance
Graphics, 2011

[Wong 2011] Wong, Bang: Points of view: Color blindness. In: Nature Methods
8 (2011), Jun, Nr. 6, p. 441–441

[Zeng et al. 2008] Zeng, Yong ; Nguyen, Thanh A. ; Yan, Baiquan ; Li,
Shuren: A distance-based parameter free algorithm for curve reconstruction.
In: Computer-Aided Design 40 (2008), Nr. 2, p. 210 – 222

[Zhu and Bridson 2005] Zhu, Yongning ; Bridson, Robert: Animating Sand
as a Fluid. In: ACM Transactions on Graphics 24 (2005), Nr. 3, p. 965–972

A Appendix

A.1 Visual Analysis Tool Implementation

Implementation: A stand alone tool was implemented to analyze point cloud
neighborhoods, to study their properties and to develop and test methods. Many,
algorithms were prototyped in F#, due to its superior expressiveness, succinct-
ness, debugging environments, and more agile refactoring capabilities. Refer to
e.g. Syme et al. (2015) for an intermediate access to the language. Algorithms
were translated into a flat C++ design using libraries for OpenGL development:
the graphics framework gf 1, ImGUI (imgui (2017)), and glm (glm (2017)). The
meson build system (meson (2017), Schürmann (2014)), was used allowing for
package management.

The wrapper tool provided by meson was extended to simplify the configura-
tion process and a semver based dependency management introduced, see semver
(2017). A specified package is added automatically as a subproject into the cur-
rent build project by calling the introduced argument command line tool taking
two arguments. This enables an easy to use but powerful multi platform C++
source package management. Configuration and compilation stages are very effi-
cient with minimal maintenance overhead. Up to now, no standard C++ package
manager was accepted by the community. A few exist, such as Conan2, Pac-
man3, or Chocolatey4. They have not been standardized by the C++ community.
NuGet5 is the de-facto standard in the dotnet ecosystem, as it is supported by
Microsoft. Package management removes the need to rebuild libraries in the own
configuration, and saves compile and work time for developers. Note that the me-
son approach supports package management per project as well as allows to define
own packages very easily. No system wide management is required. Commonly,
virtual machines are set up to separate the development environment per project

1by Daniel Schiffner
2https://conan.io
3https://www.archlinux.org/pacman
4https://docs.chocolatey.org
5https://www.nuget.org

149

https://conan.io
https://www.archlinux.org/pacman
https://docs.chocolatey.org
https://www.nuget.org

150 APPENDIX A. APPENDIX

if system wide package management is utilized.
Analysis Tool: The interactive tool consists of six GUI sections and a 3D

display. Figure A.1 shows the overall appearance and its main components. The
components are interlinked for interactive analyzes; e.g. when selecting a certain
point of the reconstruction a tensor marker is moved there showing the tensor’s
ellipsoid and radius, the related multi scale geometric measure plots are updated
in the multi scale geometric measure graph plot, and the radius marked as a
vertical grey line there and in the multi scale feature image (MSFI). Either MSFIs
on the reconstructed line, or on the original PC can be illustrated. The MSFI
component includes a close up around the selected position either sorted by the
(reconstructed) curve parameter or projection on the major eigenvector in a sole
point cloud neighborhood.

(1) (2)

(3) (4)

(5)

(8)

(6)

(7)

Figure A.1: Visual analysis tool developed in C++, OpenGL, and ImGui. It shows
a line reconstruction setup of a noisy rectangle. The main components are labeled:
(1) 3D view, (2) multi scale geometric measure graphs, (3) multi scale feature image
(MSFI), (4) MSFI neighborhood, (5) tensor marker, (6) weight functions, (7) error
graphs, and (8) control section.

Figure A.1 shows the tool. The main components are labeled: (1) 3D view of
the geometry and the line. (2) marks the multi scale geometric measure graphs
for one selected centroid: linearity (light grey), planarity (blue), and sphericity
(green). Lighter lines mark the standard deviation of multiple multi scale geomet-
ric measures in a neighborhood. The thin vertical grey line marks a selected radius

A.1. VISUAL ANALYSIS TOOL IMPLEMENTATION 151

of the PDT for analysis and relates to the size of the tensor marker (5) and the
horizontal line in (3). The thick vertical lines illustrates the local maximum score,
see Equation (9) of Ritter et al. (2021a)∼, and positions of local linearity maxima.
(3) the multi scale feature image shows all geometric measures by color map. The
vertical line marks a selected point and the horizontal line a selected radius. Scalar
data on the points is drawn as overlay; including the linearity sum as green line.
(4) is a MSFI neighborhood at the selected point sorted along its major eigenvec-
tor. (5) a tensor marker highlights the selected centroid by tensor ellipsoid and
radius. (6) weight functions are illustrated used in the covariance, interpolation,
and centroid computation. (7) Error graphs along the reconstruction line show
distance (yellow) and angular (green) errors according to the error metrics to the
original undistorted geometry. (8) is the main control section for reconstruction
parameters. The reduced set is gathered in the Main Params section.

Further, the control section is grouped into: variation, geometry creation, ten-
sor computation, and integration. Sliders, number inputs, drop-downs, check-
boxes, radio-buttons, and buttons are used to map key value pairs of names and
values to GUI elements. These control values are saved and loaded as ASCII files.
Besides the predefined parametric geometries, custom geometries can be loaded
as ’.OBJ’6 files, either from disk or a web server. The 3D view can be exported
as vector graphics ’.SVG’7 files – either in an orthographic projection from the
top view, or as a perspective projection. In the latter, point sizes are computed
and lines are exported as outlined skeletons, such that the line width can vary
dependent on depth. The tool has been split in two: one related to reconstruction
and one specialized for multi scale image exploration. Here, a user can create a
line probe in the scene and inspect the multi scale images. Windows binaries and
the source code of the tools as well as a decoupled library for the core are available
open source at Ritter (2021).

Further visualization options: the tool implements more options than pre-
sented or described in the publications. Tensor ellipsoids can be shown at each
point, with various options and parameters. A normal vector is used for shading
the points. Therefore, the minor eigenvector of the neighborhood tensor is em-
ployed. As the tensor is pre-computed at various scales, the scale can be selected
interactively. The shading’s smoothness can be adjusted by this.

6http://paulbourke.net/dataformats/obj/
7https://www.w3.org/TR/SVG11

http://paulbourke.net/dataformats/obj/
https://www.w3.org/TR/SVG11

152 APPENDIX A. APPENDIX

A.2 Extended Parameters
Expert (E) and fixed (F) parameters of the line reconstruction method of Ritter
et al. (2021a)∼ (see Section 3.3.1). Note that the equation and figure labels below
refer to the publication.

Name Type Description
StepSize E Define integration step size; default is automatic; the

median of the radii of all neighborhoods holding six
neighbors, halved: h = ∆mdn0.5. Several statistically
motivated alternatives have been tested and all others
have failed when inducing distribution noise even on
the simplest geometries.

MSSFDelta E Increment from one multi scale radius to the next;
default is automatic; the median of the radii of all
neighborhoods holding six neighbors: ∆mdn.

MSSFExponential E Toggle between exponential or linear multi scale.
PruneLines E Cut off orphaned stumps; independent of line to point

distance.
DistStatLimit E Limit computation of distance statistics, e.g. six-

neighborhood size, to a random subset of N points;
use all when set to 0; default: 1024.

StPtsMetricLim E Start point score threshold; candidates are selected if
greater; default 0.0.

StartP-
PointsLimit

E Limit consideration of start point candidates to a ran-
dom subset of N points; use all when set to 0; default
0.

StartP-
SmallNSkip

E Ignore start points candidates if there are less that x
points in a small neigborhood (N1 < x); default 6.

ManualStartPts E Give a list of specific indices used as start points.
OptMinNeighsNr F Minimum number of neighbors to consider for best

multi scale index (or radius) selection. A neighbor-
hood should have at least some neighbors to yield a
reasonable result; too small values decrease quality
in noisy regions; fixed to 7 based on observing many
noisy test cases.

AdaDirBlendType F Select adaptive directional blend method; 1 of 7;
e.g. based on linearity integral, sum, linearity value,
linearity relative index, and combinations; Equa-
tion (10).

A.2. EXTENDED PARAMETERS 153

AngularWeight F Select angular weighting function in Equation (5); 1
of 30; fixed to Fermi-Dirac (II).

CentroidType F Switch type of centroid: direct point (→ point dis-
tribution tensor), mean (→ PCA), weighted mean,
weighted median, or geometric median; fixed to the
latter.

CentroidWeight F Weighting function for weighted centroid variants; 1
of 30; unused for geometric median, mean, or PDT.

DirectionMode F Select variant of directional mixing during integration,
computing dt; 1 of 9; interpolated eigenvector (IV),
interpolated tensor, IV and angular weighted direc-
tion (AWD), ID and angular&distance weighted di-
rection, tensor line (tend), pre-computed closest multi
scale eigenvector and AWD, interpolated new com-
puted multi-scale eigenvector and AWD, or interpo-
lated new clamped eigenvector and AWD; fixed to the
latter. The choice was made based on the test geome-
tries, shown in Figures 11, 12 and 18 (additional tests
involved more extreme noise rates).

IntegrScheme F Numerical scheme used for streamline integration; 1
of 6; RK32, RK38, RK4, Merson4(5), Fehlberg4(5),
and DormandPrince5(4). Test were carried mainly
on the circle geometry and the final error after one
round of integration evaluated. The scheme order has
an influence, high schemes did improve result. But it
turned out, that other parameters, such as the weigh-
ing function applied in the tensor computation has
a much higher influence. Also, when data becomes
noisy the (minor) optimization via a higher scheme is
not relevant anymore. Thus, the fastest scheme RK32
was chosen for optimized computation time.

InterpWeight F Weighting kernel for interpolating tensors or eigenvec-
tor values in between points of the point cloud; 1 of
30; the choice is based on extensive parameters runs
(1.35 million cases) on the circle and the rectangle
reconstruction. The two geometries were chosen as
they capture sharp corners and curved regions, and
provided a simple final error computation; sampling
rates and noise levels were varied; fixed to Fermi-Dirac
(II). → Same experiment used for TensorWeight se-
lection below:

154 APPENDIX A. APPENDIX

TensorWeight F Weighting function for the tensor computation; 1 of
30; fixed to Fermi-Dirac (I).

MedianVersion F Switch geometric median implementation variants;
weighted median or non weighted; fixed to the latter.
The geometric median performance was evaluated by
investigating the properties of the multi scale linearity
plots. Optimizing for clear local maxima and minima.

StartPointsIntegral F Select method of considering start point candidates
based on the linearity graph analysis: linearity sum,
graph space integral, and world space integral; basi-
cally, these are variants on computing A and Aj in
Equations (9) and (10); fixed to linearity sum.

IPolRadFromStats F Derive interpolation radius from minimal distance
statistics; fixed to enabled.

InterpRadius F Radius used for interpolation of tensors/eigenvectors;
a reasonable number of neighbors should be covered.
The factor was chosen especially based on enabling
noisy test cases; fixed to ∆mdn2.5.

MSSFFullIntegral F Compute the integral A up to local minimum with
the largest radius or up to the first minimum from
the back (the last minimum) of the graph; set to the
latter.

MSSFWDNR F Term factor used in Equation (9); unused, fixed to
0.0.

MSSFWIntegral F Factor of the normalized integral in Equation (9);
fixed to 1.0.

MSSFWLin F Factor on the linearity value at the local maximum
used in Equation (9); fixed to 1.0.

MSSFWLinDiff F Factor of the maximum difference of the maximum
and the linearity value before (k−1) and after (k+1)
the local maximum; unused, fixed to 0.0.

MSSFWMinMaxDiffF Difference of the minimum and the maximum of the
interval used; δ in Equation. (9); fixed to -0.5.

MSSFWNeighRatio F Factor of a neighbor to radius relation used; unused,
fixed to 0.0.

MSSFWSecond F Factor to up vote the second local maximum; unused,
fixed to 0.0.

MSSFWSize F Factor for the radius or index in Equation (9). Small
good maxima are preferred; thus, this is set to a neg-
ative value; fixed to -1.0.

A.2. EXTENDED PARAMETERS 155

MSSFWidth F Factor for interval width, replaced by MSSFWInte-
gral; unused, fixed to 0.0.

StPtsPowDist F Exponent for distance in Equation (7). Start point
candidates should have large distances in between;
fixed to 1.0.

StPtsPowLMaxLin F Exponent for the linearity value at the maximum.
High is preferred; fixed to 4.0.

StPtsPowLastLin F Exponent for the linearity value at the largest radius;
unused, fixed to 0.0.

StPtsPowLinSum F Exponent for the overall linearity integral (A). Prefer
high values; fixed to 4.0.

StPtsPowNRadRat F Exponent for the neighbors to radius relation; unused,
fixed to 0.0.

StPtsPowNeighs F Exponent for number of neighbors in N1. Prefer high
number; fixed to 1.0.

AFermiMue/
AFermiTemp

F Fermi-Dirac parameters µ and T to weight angular
directions; fixed to (0.05, 0.35).

IFermiMue/
IFermiTemp

F Fermi-Dirac parameters to weight the mesh free kernel
based tensor/eigenvector interpolation; fixed to (0.05,
0.35).

TFermiMue/
TFermiTemp

F Fermi-Dirac parameters to weight the tensor (or co-
variance) computation. ω in Equation (1); fixed to
(0.1, 0.6).

156 APPENDIX A. APPENDIX

A.3 Closest Point on Skew Lines
The closest point on a skew line is used instead of 3D line intersections for the line
reconstruction algorithm in Ritter et al. (2021a)∼. The closest point was computed
as follows. Two lines are given in parameter form with A the origin, D a direction,
i denoting the first, and j the second line. The closest point on j to i is determined.
Note that the ’connecting’ line is perpendicular to both lines:

P = Ai + λiDi

Q = Aj + λjDj

Pq = Aj − Ai + λjDj − λiDi

A = Aj − Ai

PqDi = 0 (!) perpendicular
PqDj = 0 (!) perpendicular

0 = ADi +DjDiλj −DiDiλi

0 = ADj +DjDjλj −DiDjλi

ai = ADi

ap = ADj

dii = DiDi

dji = DjDi

djj = DjDj

0 = ai + djiλj − diiλi | /dii
0 = aj + djjλj − dijλi | /dij

0 =
ai
dii

+
dji
dii
λj − λi

0 =
ap
dij

+
djj
dij
λj − λi |(−1) +

0 =
ai
dii
− aj
dij

+
dji
dii
λj −

djj
dij
λj

λj =

aj
dij
− ai

dii
dji
dii
− djj

dij

.

A.4. WEIGHTING FUNCTIONS 157

A.4 Weighting Functions
The following table collects all weighting functions ω(x) employed for tensor com-
putation, mesh free interpolation, angular interpolation, and centroid computation
(see Section 3). Note that x was normalized to [0.0, 1.0], by dividing with the
neighborhood radius.

Nr Name Equation ω(x)

1 const 1
2 linear 1− x
3 linear inverse min(1, 0.1

x
)

4 quadratic 1− x2

5 quadratic inv. min(1, 0.12

x2)
6 cubic 1− x3

7 cubic inverse min(1, 0.13

x3)

8 sph-3

{
1− 3

2
4x2 + 3

4
8x3, 1 ≤ 2x < 1

1
4
(2− 2x)3, 2x ≤ 2

9 sph-4

(5
2
− 5

2
x)4 − 5(3

2
− 5

2
x)4 + 10(1

2
− 5

2
x)4, 5x < 1

(5
2
− 5

2
x)4 − 5(3

2
− 5

2
x)4, 1 ≤ 5x < 3

(5
2
− 5

2
x)4, 3 ≤ 5x < 5

10 sph-5

(3− 3x)5 − 6(2− 3x)5 + 15(1− 3x)5, 3x < 1

(3− 3x)5 − 5(2− 3x)5, 1 ≤ 3x < 2

(3− 3x)5, 2 ≤ 3x < 3

11 Epanechnikov 3
4
(1− x2)

12 IObounce 1− 1
2

{
1− bounce(1− 2x), x < 1

2

bounce(2x− 1) + 1
2
, else

13 IOcircular 1−
{

1− 1
2

√
1− 4x2, x < 1

2
1
2

√
(3− 2x)(2x− 1) + 1), else

14 IOelastic 1− 1
2

{
1− sin(13πx)210(2x−1), x < 1

2

sin(−6.5π((2x− 1) + 1)2−10(2x−1)+1), else

15 IOexponential 1−
{

0.5 · 220x−10, x < 1
2

−0.5 · 210−20x, else
16 IOsinus 1− (−1

2
(cos(πx)− 1))

17 IOCubic 1−
{

4x3, x < 1
2

1
2
(2x− 2)3 + 1, else

158 APPENDIX A. APPENDIX

18 IOQuadratic 1-

{
2x2, x < 1

2

−2x2 + 4x− 1, else

19 IOQuintic

{
16x5, x < 1

2
1
2
(2x− 2)5 + 1, else

20 cs-rbf 1 1− x
21 cs-rbf 2 (1− x)3(3x+ 1)
22 cs-rbf 3 (1− x)5(8x2 + 5x+ 1)
23 cs-rbf 4 (1− x)2

24 cs-rbf 5 (1− x)4(4x+ 1)
25 cs-rbf 6 (1− x)6(35x2 + 18x+ 3)
26 cs-rbf 7 (1− x)8(32x3 + 25x2 + 8x+ 1)
27 cs-rbf 8 (1− x)3

28 cs-rbf 9 (1− x)3 (5 x + 1)
29 cs-rbf 10 (1− x)7(16x2 + 7x+ 1)

30 FermiDiracI
(
e(x−0.6)/0.1 + 1.0

)−1

31 FermiDiracII
(
e(x−0.35)/0.05 + 1.0

)−1

32 FermiDiracIII
(
e(x−0.3)/0.1 + 1.0

)−1

with

bounce(x) =

7.5625x2, x < 4
11

9.075x2 − 9.9x+ 3.4, 4
11
≤ x < 8

11
4356
361

x2 − 35442
1805

x+ 16061
1805

, 8
11
≤ x < 9

10

10.8x2 − 20.52x+ 10.72 9
10
≤ x < 1

Declaration

Hereby I declare that this work was written independently and originally by myself.
No other than the specified sources were utilized. All passages, literally or with
regard to the content of the specified sources are identified as such. The presented
work has not yet been submitted as a PhD thesis before in the same or a similar
form.

159

	Introduction
	Related Work
	Curved Line Reconstruction
	Preliminaries
	Second Order Neighborhood Tensor
	Vector Field Integration
	Weighting Functions
	Neighborhood Centroids
	Multi Scale Geometric Measures
	Reconstruction and Visualization

	3.2 Publications
	Extensions
	Comprehensive List of Parameters
	Line Endings
	Test Geometry Creation – Curve Sampling
	Multi Scale Measure Graphs
	Weighting Experiments
	Centroid Revisited
	Separated Noise Rate Performance
	Fourth Order Neighborhood Tensor

	Computational Performance Optimization
	Preliminaries
	Tree Neighborhood Searches
	Grid based Methods

	4.2 Publications

	Application
	Preliminaries
	Enhancing Point Cloud Visualization
	Geometric Reconstruction

	5.2 Publications

	Discussion
	Conclusion
	Future Work

	Acknowledgements
	Appendix
	Visual Analysis Tool Implementation
	Extended Parameters
	Closest Point on Skew Lines
	Weighting Functions

