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ABSTRACT 

Acceleration is the derivative of the velocity and thus usually understood as the second derivative of the coordinate 

location of a moving object. Riemannian Geometry provides the mathematical framework on how to write equations in 
coordinate systems that are not inertial systems. Not only has general relativity benefited from this formalism but also 
practical applications such as numerical computations on curvilinear meshes. In this framework acceleration is described 
as the directional derivative of the velocity in the direction of the velocity. This mathematical operation is formulated in 
tensor algebra via the Christoffel symbols, a geometric object of rank three which is not a tensor by itself. In this article 
we present an approach on how to visualize these Christoffel symbols as indicator of the coordinate-acceleration and the 
curvature of space.  

KEYWORDS 

Coordinate-acceleration, tensor-field visualization, geodesics, space-time curvature, numerical relativity 

1. INTRODUCTION 

Acceleration in non-inertial coordinates requires consideration of non-vanishing Christoffel symbols, which 

describe the tangential transport and occur in the geodesic equation when computing the shortest or longest 

path between two points. These Christoffel symbols are similar to tensors of rank three, yet they are not 

tensorial objects itself. Visualization of tensors of rank two already is subject of current research [15], even 

rarer is work on visualization of tensors of higher rank [12]. To our knowledge, no work has yet been done 

on the direct visualization of Christoffel symbols. 

This paper presents an approach to visualize the effect of the Christoffel symbols as they determine the 

path of geodesics in a curved space-time involving strong gravity, which was explored in [14]. Visualization 

of curved space-time via geodesics is a common approach, analytic space-times have been studied for 
instance by K. Hamilton [10], Ellis [6], Clark [5], Blaga [3], Fechting [7], Zahn [16] and Benger [1]. A work 

applicable to purely numerical data was done already in 1992 by Bryson [4]. Geodesics were also analyzed in 

numerical space-times in the 2D (axisymmetric) era [13]. A. Hamilton implemented a real time flight 

simulator for a charged black hole using a projective technique to compute the paths of geodesics [9]. 

2. MATHEMATICAL BACKGROUND 

Let q(s) be a parameterized curve in a manifold R  M. Then qdsdq   is the velocity along this curve, an 

element of the tangential space at q(s). The second derivative, involving tangential transport from different 

tangential spaces q(s) and q(s+ds), is given by the directional derivative   of the velocity q  in the direction 

of the curve q , i.e.: qq q
  . A geodesic is a straight line, which is the result of accelerate-free motion 

according to Newton’s first law of classical mechanics, requiring 0 qq
 . Written in a coordinate system, 

the acceleration is given as 
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are the components of the metric tensor in this coordinate system. Acceleration is not just the 

sum of the second derivative of coordinate locations
q , but involves also the so-called Christoffel symbols 


 . These are “correction” factors that allow computing the acceleration in non-inertial coordinate systems. 

Well-known examples are the so-called centrifugal and coriolis “forces”, which actually are the Christoffel 

symbols written in a rotating (and thus non-inertial) coordinate system. The Christoffel symbols are not 

tensors – they may be all zero in one coordinate system, but non-zero in another coordinate system, which is 

not possible for a tensor. For a geodesic q with 0 qq
  it follows  
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i.e. the Christoffel symbols 


  applied to the velocity of a curve directly represent the second derivative 


q of the coordinate location, which can casually be seen as the acceleration as measured relative to this 

coordinate system – an observer in this coordinate system would misinterpret this measurement as the 

acceleration, when not knowing if he is inertial or not, which gives raise to the interpretation of the 

Christoffel symbols as mysterious virtual forces such as the centrifugal and coriolis force. Virtual forces have 
no physical cause but are merely due to a misinterpretation of a coordinate system as being inertial while it is 

it not. However, an inertial system does not necessarily exist at all. General relativity states that in the 

presence of masses there is no inertial system any more. Gravity itself is then considered as such a virtual 

force, ultimately described via the Christoffel symbols that are computed by the metric tensor field describing 

the curvature of space-time [11]. The term 
q  is called coordinate-acceleration throughout the paper. 

 

 
Figure 1: Illustration of the coor-

dinate-acceleration (black/yellow 

arrows) on photons moving in 

positive x-direction (grey/blue 

arrows). The black circle indicates 

the event horizon of a 
Schwarzschild [11] black hole. 

 
Figure 2: Illustration of the 

coordinate-acceleration (black/ 

yellow arrows) on photons moving 

in 45 degree rotated direction 

(grey/blue arrows) compared to 

figure (1).  

 
Figure 3: Like figure (2) but 90 

degree rotation of the moving 

direct compared to figure (1). The 

coordinate-acceleration is still 
pointing to the center of gravity. 

3. VISUALIZING SPATIAL COORDINATE ACCELERATION 

The coordinate-acceleration is a vector-like quantity dependent on the metric and the vector 
q  is the 

velocity of a photon. Both vector fields can be visualized using arrows, as illustrated in figure (1), based on 

the metric tensor field of a non-rotating (Schwarzschild) black hole. The different fields are shown in 

different grey levels. The Christoffel field maps the moving direction to the coordinate-acceleration 



following eqn. (3). To investigate the properties of this mapping the direction vectors are rotated and again 

the coordinate-acceleration visualized, figure (2) and (3).  

  Figure (1), (2) and (3) demonstrate that the directions of the coordinate-acceleration are always oriented 

towards the center of the black hole, but the magnitude changes. The magnitude decreases the closer the 

vector is located to the central axis through the black hole in direction of
q . Evidently this is a non linear 

mapping due to the Christoffel symbols as geometric object of rank three. A mapping of this kind could not 
result from a linear transformation such as provided by a tensor field of rank two. Applying a matrix (which 

represents an object of rank two) to a vector would result in the output vector to be rotated same as the input 

vector rotates. 

To enhance the visualization of coordinate-acceleration we utilize vector speckles [2], as shown in figure 

(5). Colorization of the speckles is possible in addition to indicate direction and magnitude of the 

acceleration. Vector speckles are better readable compared to arrows especially when many samples are 

illustrated while still providing the same information content, see figure (4) and (5). The coordinate-

acceleration is pointing to the center of the Schwarzschild black hole. The camera was slightly tilted in figure 

(5) such that the vectors are not all perpendicular to the camera. Thus, the color and the shape of the speckles 

provide the directional information as the vector arrow icons. 

 

 
Figure 4: Grey/blue arrows illustrate the 

velocity and black/yellow arrows the 
coordinate-acceleration. 

Figure 5: Vector speckles [2] are used to 

illustrate the coordinate-acceleration. The 
visualization of the velocity is omitted.  

The technique transports over well to three dimensional data sets. Figures (6) and (7) show different 

spatial distributions in a three dimensional volume, visualizing a Kerr space-time [11] which describes a 

rotating black hole. Here, velocity is normalized and pointing in positive x-direction for all shown vector 

speckles. Figure (6) and (7) illustrate how the coordinate-acceleration field loses its spherical symmetry 

around the center with increased angular momentum. Certain oriented regions of the volume are emphasized 

by the random seeding approach. Note the bright (and red-colored), sparse looking region right of the center 

of figure (7). Here all vector speckles point away from the direction of dominant geodesics within the Kerr 

space-time. 

Figure (8) and (9) show geodesics seeded as bundles of small circles. The geodesics are computed using 
Dop853 integration [8] with initial conditions for origin and velocity. They are enhanced by showing the 

spatial coordinate-acceleration along the line and by coloring the line with a color map driven by the time 

dimension of the coordinate-acceleration. Photons are accelerated forward in time when moving towards the 

black hole. They are accelerated backwards in coordinate time in certain regions after passing it. The event 

horizon is shrinking with increasing angular momentum [11]. Geodesics are breaking at a closer distance to 

the center, figure (9). Geodesics are symmetrical and spatial acceleration is pointing towards the center in 

figure (8), in contrast to figure (9). The bundles illustrate that geodesics are contracted when approaching the 

black hole close to the axis of the center of gravity. They are expanding when passing at farer distance. This 

property remains when introducing the angular momentum. 



 

Figure 6: Illustration of the coordinate-acceleration 

sampled on a random point distribution within a 3D 

Kerr [11] space-time with no angular momentum, 
a=0, mass m=0.2. 

Figure 7: Like figure (6). Kerr spacetime with an 

angular momentum of a=m=0.2, vector speckles of 

coordinate acceleration indicating non-spherical 
symmetry 

 

Figures were created on an Intel Core Duo T8300@2.4Ghz system with 4GB RAM and Geforce 8400M 

GS Graphics card. Geodesic integration, such as figure (8), takes about 30 seconds. One single integration 

step was measured with 0.0076 seconds in average. The result is fully interactive for camera navigation. 

 

Figure 8: Visualization of enhanced geodesic tubes, 

(a=0). Geodesics are seeded on an array of circular 

shapes. Vector speckles and the color-map of the 

lines visualize the four dimensional coordinate-
acceleration. 

Figure 9: Like figure (8) but non-zero angular  
momentum a=0.2, which leads to asymmetries. 

 



 

CONCLUSION 

An interactive technique to visualize a geometric object of rank three, the Christoffel symbol, was 

demonstrated. It allows illustrating the four dimensional coordinate-acceleration by enhancing the three-

dimensional visualization of geodesics. The technique has been exemplified via a numerically sampled Kerr 

space-time. The approach is directly applicable to numerical data sets, e.g. CFD data on curvilinear meshes 

or data stemming from numerical relativity research.  

ACKNOWLEDGEMENT 

This research employed resources of the Center for Computation & Technology at Louisiana State 

University, which is supported by funding from the Louisiana legislature's Information Technology Initiative. 

Portions of this work were supported by NSF/EPSCoR Award No. EPS-0701491 (CyberTools). The authors 

furthermore thank the Institute for Astro- and Particle physics at the University of Innsbruck for their 

support. 
 

 

REFERENCES 

[1] W. Benger, 1996, Simulation of a Black Hole by Raytracing, in Relativity and Scientific Computing - Computer 
Algebra, Numerics, Visualization, pages 2-3, Berlin Heidelberg New York, Springer Verlag 

[2] W. Benger, G. Ritter, S. Su, D.E. Nikitopoulos, E. Walker, S. Acharya, S. Roy, F. Harhad and W. Kapferer, 2009, 

Doppler Speckles - A Multi-Purpose Vectorfield Visualization Technique for Arbitrary Meshes, in CGVR'09 - The 
2009 International Conference on Computer Graphics and Virtual Reality, Las Vegas, Nevada, USA 

[3] P. Blaga and C. Blaga, 2001, Bounded radial geodesics around a kerr-sen black hole, Classical and Quatum Gravity, 
18(18):3893 

[4] S. Bryson, 1992, Virtual Spacetime: An Environment for the Visualization of Curved Spacetimes via Geodesics 
Flows, Technical Report RNR-92-009, NASA, USA 

[5] Ch. Clark, W.A. Hiscock and Sh.L. Larson, 1999, Null geodesics in the Alcubierre warp drive spacetime: the view 
from the bridge, Gerneral Relativity and Quantum Cosmology, (gr-qc/9907019), July 1999 

[6] G. Ellis and H.V. Elst, 1997, Deviation of geodesics in FLRW spacetime geometries 

[7] O. Fechting, 2004, Physikalische Aspekte und Visualisierung von stationären Wurmlöchern, Master’s thesis, Institut 
für Theoretische Physik I, Universität Stuttgart, Germany 

[8] E. Hairer, S.P. Norsett and G. Wanner, 2000, Solving Differential Equations I, Springer-Verlag Berlin Heidelberg 

[9] A. Hamilton, 2010, Black Hole Flight Simulator, http://casa.colorado.edu/~ajsh/bhfs/screenshots 

[10] K. Hamilton and Ch. Fleming, 1992, Space-time geometries characterized by solutions to the geodesic equations, 
Computers in Physics, 6(5):498-505 Sep/Oct 

[11] J.B. Hartle, 2003, Gravity: An Introduction to Einstein's General Relativity, Addison Wesley 

[12] T. McGraw, B. C. Vemuri, E. Ozarslan, Y. Chen, T. Mareci, Variational Denoising of Diffusion Weighted MRI, 
Inverse Problems and Imaging, Vol. 3, No. 4, November 2009, pp. 625 - 648. 

[13] NCSA, 2010, Movies from the edge of spacetime, http://archive.ncsa.illinois.edu/Cyberia/NumRel/MoviesEdge.html 

[14] M. Ritter, 2010, Computing Geodesics in Numerical Space Times, Master's Thesis, University Innsbruck, Austria 

[15] J. Weickert and H. Hagen, 2006, Visualization and Processing of Tensor Fields, Springer-Verlag Berlin Heidelberg 

[16] C. Zahn, 1991, Vierdimensionales Raytracing in einer gekrümmten Raumzeit, Master’s thesis, Universität Stuttgart, 
Germany 

http://casa.colorado.edu/~ajsh/bhfs/screenshots
http://archive.ncsa.illinois.edu/Cyberia/NumRel/MoviesEdge.html

