
Article 7

Implementation of an Algorithm
for Approximating the Curvature
Tensor on a Triangular Surface
Mesh in the Vish Environment

Edwin Mathews1, Werner Benger1, Marcel Ritter2

1Center for Computation & Technology

at Louisiana State University (CCT/LSU), Baton Rouge, Louisiana, USA
2 Unit of Hydraulic Engineering,

Department of Infrastructure, University of Innsbruck

Finding local surface properties of a generated mesh is an essential
component in applications across several fields. Specifically, Gaussian
curvature provides intrinsic geometric information of local shape char-
acteristics on a surface. It finds use in mesh applications like 3-D
scanned image noise smoothing, feature recognition, and data analysis.
An algorithm was developed for the Vish environment to approximate
the shape operator from the curvature tensor using only lists of tri-
angle vertex positions and individual vertex positions. The algorithm
is based on a curvature tensor approximation method developed by
Gabriel Taubin and does not need information about the mesh edges
to be provided explicitly in the calculation. From the curvature ten-
sor, the principle directions and curvatures can be found and used to
calculate the Gaussian curvature and mean curvature at each vertex.
Using this information, an application is given where the curvature is
used to analyze mixing on the surface of a fluid ’virtual bubble.’
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7.1. INTRODUCTION

7.1 Introduction

Development of a Vish-specific algorithm that takes a mesh surface as an input
and returns a field of curvature values is an important foundation in the devel-
opment of new visualization modules. In current practice, curvature calculation
is essential to feature detection and noise filtering of sampled three dimensional
geometry and to the detection and analysis of medical images. With the broad
scope of polyhedral surfaces in computer graphics in industrial and biomedical
engineering, robotics, and several other fields, it is a start for where Vish may
find itself in years to come. Here, curvature finds a novel use in the analysis of
Computational Fluid Dynamics (CFD) time surfaces [Bohara et al., 2010]. The
time surface is a virtual bubble constructed from seed points in a CFD generated
vector field [Benger et al., 2009]. It can be seen as a higher dimensional extension
of timelines, where a continuous mesh surface constructed from the seed points
evolves over time. Being able to visualize a changing surface in a large data model
has advantages in observing fluid movement and mixing over timelines. Where
timelines are effective in displaying the trajectory and rotation of a particle, time
surfaces give a more intuitive visualization of the effects of the time dependent
vector field and of the movement of multiple particles in relation to each other.

7.1.1 Application in Analysis

The time surface was intially developed to visualize a simulation of stirred tank
data to help improve mixing efficiency of the stirring process [Bohara et al., 2010].
Without a means to quantify the mixing, conclusions about the effectiveness of the
stirred tank had to be made via visual inspection of the time surface. In general,
mixing is the combining of two or more substances into one mass with a thorough
blending of the constituents. So how can we quantify this?

Surface shape information at each vertex is useful in representing the mix-
ing on the time surface because the variation of a vertex position relative to its
neighboring vertices can be quantified. If the curvature of a vertex is initially zero
then changes in magnitude abruptly, it signifies a quick movement of the particles
around the vertex in relation to its neighbors. Unfamiliar particles will then come
into contact as a result of replacing the particles that have just moved away. So
while the curvature itself does not represent the mixing of the fluid locally, but the
change of curvature does. When evaluating over a finite mesh, it is important to
compute intrinsic information about the surface so that nominal values of the in-
formation will not be dependent on the mesh refinement. The Gaussian curvature
is an intrinsic invariant of the surface as opposed to the extrinsic invariant mean
curvature; it does not depend on its embedding, and a mesh approximation will
only become more accurate with a higher refinement.
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7.2. MATHEMATIC PRINCIPLES

7.2 Mathematic Principles

In this application, the method looks to find the shape operator at some point
p defined on a surface S. The shape operator, or Weingarten map, is a type of
extrinsic curvature that is a linear operator on the tangent space at each point p
on the surface S. At any point, it is equal to the Jacobian of N, the function that
yields the unit vectors normal to the surface. To calculate this on a grid vertex,
the contribution from each edge attached to the vertex must be averaged. Along
this edge where the normal vectors at two adjacent points are given, the difference
of the normal vectors dNk = Nk

0 − Nk
1 with respect to each coordinate direction

dxi = xi0 − xi1 can be found. In three dimensions,

Jki =

 dN
dx1
dN
dx2
dN
dx3

 =

 dN1

dx1
dN2

dx1
dN3

dx1
dN1

dx2
dN2

dx2
dN3

dx2
dN1

dx3
dN2

dx3
dN3

dx3

 =
dNk

dxi
(7.1)

where Jki is the Jacobian along this edge vector given by x0 − x1. The projection
of the surface Jacobian on to the tangent plane can be computed if two vectors
tangent to the surface, ~u and ~v, are given where ~u, ~v, and the normal vector at
p, form an orthonormal basis on the surface. This shape operator in the surface is
equal to

S =

(
J(u, u) J(u, v)
J(v, u) J(v, v)

)
=

(
κ11
p κ12

p

κ21
p κ22

p

)
(7.2)

where the operation J( · , · ) is of the form J(u, u) = utJu and J(u, v) = utJv.
The shape operator can also be defined using the Metric Tensor, I = Ixxdx

2 +
2Ixydxdy + Iyydy

2, and the Extrinsic Curvature, II = IIxxdx
2 + 2IIxydxdy +

IIyydy
2, coordinate description of the tangent space at the surface S at p. Using

the coefficients of the first and second fundamental forms

S =
1

det I

(
IIxxIyy − IIxyIxy IIxyIyy − IIyyIxy
IIxyIxx − IIxxIxy IIyyIxx − IIxyIxy

)
where det I = IxxIyy − I2

xy, the area of the surface element. The result for both
formulations is a 2× 2 symmetric matrix where the eigenvalues are just the prin-
ciple curvatures at some p on S. Accordingly, the determinant is the Gaussian
curvature and half the trace of the shape operator is the mean curvature. To find
the directional curvature at some point with a defined shape operator in direction
~T defined in surface coordinates, the following operation is performed

κp = S(T, T ) =
(
t1 t2

)( κ11
p κ12

p

κ21
p κ22

p

)(
t1
t2

)
(7.3)
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7.2. MATHEMATIC PRINCIPLES

where ~T = t1T̂1 + t2T̂2 is a tangent vector on S at p. T̂1 and T̂2 are the principle
directions on S at p when the shape operator is diagonal and forms an orthonormal
basis of the tangent space. If the normal vector N at p is added to this orthonormal
basis, eqn. (7.3) is extended to non-tangential directions

κp =
(
n t1 t2

) 0 0 0
0 κ11

p κ12
p

0 κ21
p κ22

p

 n
t1
t2

 (7.4)

and ~T is expanded to ~T = nN̂ + t1T̂1 + t2T̂2. The vector ~T can be written as
a linear combination of another orthonormal system. The directional curvature
can still be evaluated using this different coordinate system with another 3 × 3
symmetric matrix, Up, as long the three eigenvalues are still 0, κ11

p , and κ22
p . The

shape operator can be recovered from the curvature tensor Up by restricting the
matrix to the tangent plane.

Using the method described by Taubin [Taubin, 1995], the curvature tensor is
approximated by defining a matrix M by an integral formula that has the same
eigenvectors as Up and has their eigenvalues related by a fixed homogeneous linear

transformation. For −π ≤ θ ≤ π on the tangential plane, ~Tθ at p is the unit length
tangent vector ~Tθ = cos(θ)T̂1+sin(θ)T̂2. T̂1 and T̂2 represent the same orthonormal
principle directions in surface coordinates as previously mentioned. Using this in
the expression for directional curvature:

κp =
(

cos θ sin θ
)( κ11

p κ12
p

κ21
p κ22

p

)(
cos θ
sin θ

)
Because T̂1 and T̂2 are the principle directions, κ12

p = κ21
p = 0. Evaluating the

equation results in κp(Tθ) = κ11
p cos

2(θ) + κ22
p sin

2(θ). Integrating over the entire
surface element about p, the 3× 3 approximation matrix M is defined as

M =
1

2π

∫ π

−π
κp(Tθ)(Tθ ⊗ Tθ)dθ (7.5)

In M , the normal vector N is an eigenvector associated with the zero eigenvalue
since Tθ ⊗ Tθ is a rank 1 matrix at every θ and ~Tθ is tangent to the surface at p. If
M is then factorized and and integrated, it can be shown that the eigenvalues of
M , m11 and m22, are related to the principle curvatures by

κ11
p = 3m11

p −m22
p (7.6)

κ22
p = 3m22

p −m22
p (7.7)
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7.2. MATHEMATIC PRINCIPLES

To approximate the curvature κp along some tangential vector ~T , we use a curve
q(s), a normal section to S at p parameterized by arc length. By differentiating
and solving at s = 0, q(0) = p, q′(0) = T , and q′′(0) = κp(T )N , where N is the
unit length normal vector. When q(s) is expanded in Taylor series

q(s) = q(0) + q′(0)s+
1

2
q′′(0)s2 +O(s3)

= p+ Ts+
1

2
κp(T )Ns2 +O(s3)

Removing higher terms and solving for κp(T ),

κp(T ) = lim
s→0

2N t(q(s)− p)
||q(s)− p||2

≈ 2N t(pj − pi)
||pj − pi||2

(7.8)

where pj is another point on the surface close to the point pi, where the approx-
imation is being done. This allows for the evaluation of the directional curvature
directly on a mesh surface between two neighboring points pj and pi. Now, all of
the components needed to compute the shape operator have been defined. The
integral formula for M when solving at pi is discretized to

M̃i =
∑
j∈i

wijκij(Tij ⊗ Tij) (7.9)

where j are the vertexes surrounding vertex i. The weighted value wij is value based
on the area of the triangles bordering the tangent vector. Once M̃i is calculated, a
Householder matrix Q corresponding to the plane orthogonal to the unit normal
vector is used to decompose the 3× 3 matrix M̃ . The Householder reflection is a
transformation that describes a reflection by a plane, in this case the tangential
plane at p on S. By construction, the first column of the Householder matrix is
equal to the unit normal vector and the other two columns are an orthonormal
basis of the tangent space. Because the unit normal vector at pi is an eigenvector
of M̃i corresponding to the 0 eigenvalue,

QtM̃iQ =

 0 0 0
0 m11

p m12
p

0 m21
p m22

p

 (7.10)

The values of the 2× 2 minor can then be used to find the values of the principle
curvature using the relations above for κ11

p and κ22
p . From there, as described above,

the Gaussian curvature or mean curvature can be evaluated at that vertex.
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7.3. OUR APPROACH

7.3 Our Approach

To use the algorithm, an input list of vertices and list of triangles with the three
vertices that make up each triangle of the current grid are used. Instead of requiring
a list of edges on the grid surface, they will be computed for each triangle. The
first step is to compute the weighted unit normal vector, Nvi , of each vertex.

Nvi =

∑
fk∈F i NfkAk

||
∑

fk∈F i NfkAk||
(7.11)

To find Nvi , the normal vector, Nfk , of each triangle face fk surrounding vertex i
is multiplied by its face area Ak. The sum of all faces is then normalized. This is
done within a loop for all triangles on the surface. First, coordinates for each of
the three vertices in the triangle are needed.

for (i = 0; i <Number of Triangles; i++)

{

point A, B, C;

A = ... ; B = ... ; C = ... ;

Then, two of the triangle edge vectors are computed for finding the area and normal
vector.

tvector BA = B - A;

tvector CA = C - A;

The area is determined by half of the cross product norm of the same two edge
vectors. The triangular area is placed into an array.

TriangleArea[ i ] = .5*norm(BA ^ CA);

The weighted triangle surface normals are then weighted by their area and placed
in a 3-component vector array.

WeightedTriangleNormal[ i ] = (BA^CA);

A nested loop is created for each of the vertices in the triangle. The area of the
triangle is then summed to an array on the vertices. This VertexArea is a scalar
equal to the area of all triangular faces surrounding a single vertex. It finds use later
in the algorithm when calculating a weighted value and could also be visualized
on the time surface to show where the surface is ’stretching’.

for(k = 0; k<3; k++)

{ VertexArea[T[k]] += TriangleArea[ i ];
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7.3. OUR APPROACH

Here, T[k] is the index of the three vertices in the triangle. For the call Vertices
Area[T[k]] += ..., the area is being summed to the vertices through the current
triangle in the outer loop. The weighted triangle normal vector is then summed to
another three-component vector array on each of the vertices in the same fashion.

WeightedVertexNormal[T[k]] += WeightedTriangleNormal[i];

}

}

Both loops are then closed. After this section has completed, each vertex will have
an array with the sum of all the triangular areas surrounding it and an array with
the sum of all the triangular surface unit normal vectors. A new loop for all vertices
on the surface is created to normalize the summed weighted vertex normals.

for(v=0; v < Number of Vertices; v++)

{ WeightedVertexNormal[v] = WeightedVertexNormal[v].unit(); }

Next, another loop for all triangles is used to compute the curvature tensor of each
vertex. To start, edge vectors must be computed for the first edge.

for(i = 0; i < Number of Triangles; i++)

{ tvector AB, BA;

AB = ... ; BA = ... ;

For the computation of M at the two vertices attached at the ends of this edge, a
tensor weight wij is used. This weight helps to balance the contribution of edges
representing a larger portion of the area surrounding the vertex. For all edge con-
tributions to a vertex,

∑
wij = 1. The weight for this triangle’s contribution to

the shape tensor is equal to the area of the triangle divided by twice the area of
all the triangles surrounding the vertex to which it is contributing.

double Wij0 = TriangleArea[ i ]/(2*VerticesArea[T[0]]);

Here, wij is computed for triangle vertex A, or 0, denoted by the term Wij0. The

projection of the edge vector ~AB on the tangential plane is calculated using

Tij =
(I −Nvi ⊗Nvi)(

~AB)

||(I −Nvi ⊗Nvi)(
~AB)||

(7.12)

where I is the 3× 3 identity matrix and Nvi is unit normal vector at the vertex i.
This operation can be performed by the single function

tvector TijAB = Tijoperator( WeightedVertexNormal[T[0]], AB );
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7.3. OUR APPROACH

Then, for the same edge the directional curvature needs to be found using eqn.
(7.8). A function is Kijoperator() used for that purpose.

double KijAB = Kijoperator( WeightedVertexNormal[T[0]], AB );

Now, all of the components are available to compute the contribution of edge ~AB
to the approximation of the curvature tensor at vertex A. The tensor product of
Tij is computed, multiplied by the two scalar values κij and wij and, finally, added
to a 3× 3 matrix array indexed for the particular vertex.

Matrix33 TijABTensorProduct = ... ;

CurvTensor[T[0]] += Wij0 * KijAB * TijABTensorProduct;

where CurvTensor is a 3× 3 matrix array. This operational procedure is repeated
for the other edge vectors in the triangle. Each vertex will have two components of
the curvature tensor added to it from each triangle of which it belongs, so for each
triangle in the loop above, six curvature tensor components will be computed.
To continue with computing the shape operator from the curvature tensor, the
loop for all triangles is ended and a new loop for all the vertices on the surface is
started. To find the Householder matrix which is needed to restrict the tensor to
the tangential plane, the value of the sign in the calculation of Wvi must be found:

Wvi =
E1 ±Nvi

||E1 ±Nvi ||
(7.13)

where E1 is the first coordinate vector and is equal to (1, 0, 0)t. If the magnitude
of ||E1 −Nvi || > ||E1 +Nvi ||, the sign is negative; otherwise, it is positive.

}

for(v = 0; v < Number of Vertices; v++)

{ tvector E(1,0,0);

tvector A = E + WeightedVertexNormal[ v ];

tvector B = E - WeightedVertexNormal[ v ];

double MagB = norm(B);

double MagA = norm(A);

tvector Wvi;

if(MagB > MagA)

{ Wvi = B.unit(); }

else

{ Wvi = A.unit(); }

The Householder matrix Qvi is then found by the formula Qvi = I− 2WviW
t
vi

And

completing the restriction to the tangential plane, Qt
vi
M̃viQvi is computed.
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7.4. RESULTS

Matrix33 QviT = ...;

Matrix33 Holder = QviT*CurvTensor[v]*Qvi;

where Holder is the final 3× 3 Matrix whose first row and column are zeros. That
leaves a 2× 2 non-zero minor whose eigenvalues are m11 and m22 from eqn. (7.6)
and (7.7). The two principle curvatures now finally allow the computation of the
Gaussian or mean curvature of a triangular surface.

GaussCurve[ v ] = (3*m11 - m22) * (3*m22 - m11); }

7.4 Results

Using the curvature tensor module and pre-existing modules in Vish to render
scalar and tensor data on a surface, we have been able to produce visualizations
useful in the analysis of fluid mixing on the surface of time surfaces, such as
illustrated in fig. (7.1). Here the Gaussian Curvature is shown on the triangular
surface of a fluid blob of the stirred tank data set. The blue area identifies locations
with a large positive Gaussian Curvature and red identifies a large negative value.
As time elapses in the simulation, mixing is indicated by color change on the
surface. As previously stated, this signifies the movement of particles within the
surface and contact with new particles. Currently there are singularity points in
the approximation related to a incorrect sign in the curvature. This tends to occur
at points where the refinement of the mesh is very poor and less than six triangles
are surrounding a vertex.

7.5 Future Work

The mesh refinement procedure for the time surface is presently being updated to
improve the mesh quality, and may prove to diminish errors due to poor surface
quality. Beyond that, values of the approximated curvature are being compared
to surfaces with known curvature for validation and to estimate error. It is also
of interest to directly compute the time derivative of the Gaussian curvature as
a means of analysis instead of a visual interpretation. In future projects, the cur-
vature module is looking to be used in the analysis of chemical dispersant mixing
in Gulf of Mexico oil spill modeling. These disperants contain surfactants that
dissipate oil slicks but are dependent on wave action and water movement for
mixing. This modeling would utilize the time surface for visualization and could
interpreted similarly to the stir tank data.
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7.6. SUMMARY

Figure 7.1: Gaussian Curvature on a triangulated time surface representing a fluid
blob.

7.6 Summary

After presenting the mathematical foundation of surface curvature, an algorithm
for its numerical computation was presented. The curvature tensor approximation
was then implemented as a module in the Vish framework. In Vish, the module
is currently being employed to compute the Gaussian curvature for the analysis
of mixing on a CFD time surface. It provides a visually intuitive and quantifiable
method of mixing evaluation in time surface simulations along with providing a
characteristic value used in several other graphical applications.
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