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Abstract

Particle-based methods are a widely used technique for fluid-flow
simulations nowadays, especially, because GPU hardware became very
powerful and methods are very well parallelizable. In this study we
apply the smooth particle hydrodynamics (SPH) method, originating
from Astrophysics, and the position-based dynamics method (PBD),
stemming from Computer Graphics. We compare them to the well-
established finite volume method (FVM) used in engineering in the
context of a new data source for river-bed geometry. The river geome-
try was acquired by airborne bathymetric light detection and ranging
(LiDAR). As the data from LiDAR scans is point-based, it is naturally
compatible with particle-based methods. We analyze the potential of
doing hydraulic computations based on particle methods on bathy-
metric LiDAR data. A 160[m] long section of a river is selected for the
case-study and hydraulic comparison. Particle simulation codes are
extended and computations are tuned to meet a water table, known
from the LiDAR scan at a reference cross section. The results show
16% higher velocities using PBD compared to the FVM. With further
parameter fine-tuning and extensions this can be improved and the
method could be an alternative for mesh based river-flow simulations.
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1 Introduction
Problem Statement: Airbone bathymetric LiDAR is a relatively new data
source for monitoring water bodies [Steinbacher et al., 2012]. The laser pen-
etrates the water surfaces and records return signals thereof and, addition-
ally, of the wet ground below. The result is a high resolution point cloud,
which can be utilized for flood studies, morphology analysis, or, generally,
hydraulic computations on coasts, lakes, or rivers. In the case of river hy-
draulics usually meshes are generated for computation. They are either
used as boundary condition or as the computational mesh itself, e.g. using
shallow water equations.

Particle methods have become a standard tool for hydraulic simluations
in the field of Astrophysics and in the field of visual effects and computer
graphics for movies and games. Especially, GPU acceleration of such sim-
luation codes makes the methods attractive. Recent developments have
further improved performance for water fluid simulations in means of qual-
ity and speed. In this work we focus on two particle simulation meth-
ods: predictive-corrective incompressible smooth particle hydrodynamics
(PCISPH) and position based dynamics (PBD). PCISPH improved the orig-
inal formulation of SPH for incompressible fluids, such as water, by an in-
ner prediction process for pressure, allowing to do larger time steps. PBD
has a different approach as SPH, by solving on the particle positions by
used constraint functions. Its main benefit is its speed and robustness. In
an earlier work those two methods have already been prepared and ad-
justed, especially, for an application in river simulations [Schmidt, 2017].
However, it lacks a ground truth evaluation with a well-established sim-
ulation tool, fine tuning, and boundary flow handling. The scaling of the
simulations were unrealistic in the verification examples and performance
measures. This is caught up in this work and the particle simulation meth-
ods are applied in a real world scenario based on a bathymetric LiDAR
scan of a river section. Computation results are analyzed and compared
to manual engineering calculations and solutions of a well-established 3D
flow simulation tool: Flow3D. If a particle method is a considerable alter-
native the process of mesh generation can be skipped. Also, formulation of
sediment transort and coupling with soft and rigid bodies, e.g. driftwood
jam, could be simpler. The following questions are targeted in this thesis.
Research Questions: From more general to specific.

• Can a particle simulation be done directly on bathymetric LiDAR?
• Can PBD or PCISPH yield resonable resuls for a river flow?
• Is the mean velocity in a river cross section resonable?
• Can the methods compete in computation time to Flow3D?
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Aims: The aims of the thesis in short are:
• Setup a particle simulation tool for river flows using SPH and PBD
• Prepare bathymetric LiDAR data of a river section for computations
• Evaluate the particle methods by comparing to a Gauckler-Mannig-

Strickler flow rate estimation and a Flow3D simulation
Contributions: The contributions of the thesis in short are:

• Mesh preparations of the river bed from bathymetric LiDAR
• Setting up and running simulations to match the LiDAR water table

– in the commercial Flow3D software
– in a C++ particle simulation tool developed in Visual Studio 2017

• Comparisons of the Flow3D and PBD results at a cross section and a
Mannig Strickler estimation of the volumetric flow rate

• Extensions to particle simulation code:

– Corrections, adjustments and fine tuning of the algorithms
– Added a particle sink/source
– Added saving and loading of the full particle simulation state
– Added obj-mesh import for boundary particles
– Global size scaling factor
– Convergence output by statistics of density and velocity
– 3D view to image file rendering
– Simulation configuration data structure including save/load

• Development of a F# interactive cross section plotting tool for a fluid
flow state

Outline: First, the applied methods are shortly presented and decribed,
including neccesary extensions. A quick start for the related flow equations
was added, to make the thesis complete. More details can be found in the
referenced literature. Then, river section selection and data preperation is
described, followed by the different simulation setups. The result section
starts with an engineering calculation to estimate the mean velocity in a
reference cross section. Further, results of the simulations are presented
and compared. Finally, the thesis closes with a conclusion and future work.
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2 Methods
The methods for data acquisition and three different methods used for
the numerical computations and are shortly summarized. The numerical
methods follow literature and were slightly adjusted, to ease comparabil-
ity and to reduce content. The subsections related to the flow equations
and the finite volumes method are taken from an introductory work by
[Versteeg and Malalasekera, 2007], [Macklin and Müller, 2013] and
[Solenthaler and Pajarola, 2009] were the main sources for the particle meth-
ods. Selected references therefrom were also involved.

2.1 Data Acquisition
Data was acquired using an airborne system running a green laser Riegl
VQ880-G [Steinbacher et al., 2012] in a Tecnam 2006T twin engine airplane.
The position and rotation of the system is tracked via GPS and IMU. The
green laser wavelength is able to penetrate water bodies up to ∼ 13[m] in
calm or ocean, and up to ∼ 5[m] in river waters. Figure 1 illustrates the
principal of the data acquisition. Laser pulses are sent at a frequency of
550[kHz] onto the terrain in a circular pattern. For each laser pulse, several
echoes can be identified by analyzing local maxima in the response signal
and, using the known laser position and rotation, transformed in 3D point

Figure 1: Bathymetric airborne LiDAR scanning penetrates the water sur-
faces. A sent light impulse (right) is distorted dependent on the targeted
object and material. Local maxima of the returned response (left) are iden-
tified as echoes and transformed into 3D space, forming a 3D point cloud.
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Figure 2: Example of a point cloud stemming from the bathymetric air-
borne LiDAR laser scanning. A cross section of 1[m] depth is shown.

locations. The resulting raw point cloud needs further processing: geo-
referencing, classification, and refraction correction. Then, it is applicable
e.g. for more fine grain classification or for geometric reconstruction, such
as generation of a simulation mesh for a hydraulic study. The technique
also penetrates vegetation well due to its large footprint. Figure 2 shows a
one meter cross section of a classified and refraction-corrected point cloud
of a small river.

2.2 Flow Equations
The basic equations describing the dynamics of a fluid are derived from
the conservation laws of mechanics, [Fielding, 2018]:

• conservation of mass (continuity equation)
• conservation of momentum (Cauchy equation)
• conservation of energy

The laws are formulated at infintesimal, but still macroscopic scale. Thus,
a small fluid element is a very small cell or particle of a fluid continuum,
and not modeled on molecular level.
Mass conservation: Here, one relates the rate of a change in mass of a
volume V to mass flux crossing the boundary of the element:

rate of change of mass in V := − d

dt

∫
V

ρdV = −
∫
V

∂ρ

∂t
dV (1)

rate of mass boundary flux of V :=

∮
S

ρv · dS (2)
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Figure 3: Left: Volume and surface of a fluid element. The arrow repre-
sents the mass boundary flux. Right: Surface forces on a fluid element.
Exemplary in 2D with tij the components of the stress tensor.

with ρ density, t time, S the surface of the element, and
∮

an integral of a
closed surface. By Gauss’ divergence theorem the surface integral is con-
verted to a volume integral and equated, yielding the continuity equation:∫

V

∇ · (ρv)dV = −
∫
V

∂ρ

∂t
dV (3)

∂ρ

∂t
+∇ · (ρv) = 0 (4)

with∇ :=
(
∂/∂x, ∂/∂y, ∂/∂z

)
. In case of incompressibility it can be further

simplified, as density ρ becomes constant - independent of space and time.
Water is modeled as incompressible fluid:

∇ · v = 0 (5)

Momentum conservation: Here, one bases on Newton’s second law. The
rate of change of momentum of the element must equal all forces acting
on the element. Forces are separated into external body and surface forces.
External body forces act on all fluid elements similarly, such as e.g. grav-
ity. Surface forces are modeled by the stress tensor of the fluid element,
gathering all forces at the element’s boundary:

rate of change of momentum :=
d

dt

∫
V

dV ρv =

∫
V

dV ρ
Dv

Dt
(6)

body force + surface force :=

∫
V

dV ρg +

∮
S ˜
tdS (7)

:=

∫
V

dV
(
ρg +∇ ·

˜
t
)

(8)

ρ
Dv

Dt
= ρg +∇ ·

˜
t (9)
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Equation (9) is know as Cauchy equation - in Cartesian coordinates:

ρ
Du

Dt
= ρgx +

∂

∂x
txx +

∂

∂y
txy +

∂

∂z
txz

ρ
Dv

Dt
= ρgy +

∂

∂x
tyx +

∂

∂y
tyy +

∂

∂z
tyz

ρ
Dw

Dt
= ρgz +

∂

∂x
tzx +

∂

∂y
tzy +

∂

∂z
tzz (10)

with
˜
t the symmetric stress tensor. Next, surface stresses are related to

pressure and viscous friction, which are the sources for stresses on a fluid
element. As the equations relate physical quantities they are called
constitutive equations, in Cartesian coordinates:

˜
t =

 −pλ∇ · v + 2µ∂u
∂x

µ
(
∂u
∂y

+ ∂v
∂x

)
µ
(
∂u
∂z

+ ∂w
∂x

)
−pλ∇ · v + 2µ∂v

∂y
µ
(
∂v
∂z

+ ∂w
∂y

)
symm. −pλ∇ · v + 2µ∂w

∂z

 (11)

Here, µ and λ are the coefficients for dynamic and bulk viscosity. The re-
lation between the velocity gradient and the stress is assumed to be linear
and isotropic. Bulk viscosity λ vanishes for incomressible fluids and with
a constant density equations (10) can be written as:

ρ
Dv

Dt
= ρg −∇p+ µ∆v (12)

For the scope of the thesis, the analytic introduction stops here. A sim-
plified form of the Navier-Stokes equations was derived [Navier, 1821].
Importantly, for solving the flow of water, one has to deal with a set of cou-
pled differential equations. Velocity and pressure are interlinked. More
equations and terms are required dependent on the physics or engineer-
ing problem, e.g. viscosity, temperature/combustion, turbulance, etc. No
analytic solutions are yet known and still among the millennium prob-
lems [Clay-Math.-Inst., 2018]. Numerically, the equations can be solved,
as discretized initial value problem. Different approached exist for the dis-
cretization, e.g. finite differences/volumes, finite elements, SPH and po-
sition based fluids. They also require other formulations of the equations.
One distinguishes between Eulerian and Langrangian discretization. Eule-
rian is fixed in space, and the fluid is moving through elements. In contrast,
elements are moving along with the fluid using a Langrangian discretiza-
tion.
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Figure 4: Eulerian discretization example used in the finite volume
method. A staggered uniform grid is utilized. Pressure and density are
handled on the main grid indexed in upper case letters I ,J . Velocities are
computed on a halfway shifted grid indexed by lower case letters i,j.

2.3 Finite Volumes
The finite volume method is an Eulerian method operating on a regular
grid1 and based on finite differences. Thus, partial derivatives are expressed
as numerical differences to neighbored grid positions. Figure 4 illustrates
a 2D regular grid and an additional staggered grid inbetween. Scalar vari-
ables, e.g. density and pressure, are stored on main grid, but velocity on
the staggered grid. This improves for non cancelling velocities in case of
fluctuating pressure values. In the finite volume approach, also equations
are integrated over the cells and a piece-wise linear variation of the depen-
dent variables is assumed. Based on the integrated quantities, fluxes across
boundaries are balanced [Chorin, 1968]. For more indepth introductions
refer to e.g. [Moukalled et al., 2016] and [Versteeg and Malalasekera, 2007].

One established industry standard algorithm is known as
”SIMPLE”: Semi-Implicit Method for Pressure-Linked Equations and its
extension ”SIMPLER” (Revised). It cures a problem stemming from the
continuity equation beeing itself independ of pressure. It includes sev-
eral steps inside one time step, where first some preliminary velocities
are estimated followed by pressure and velocity corrections, see Figure
5, [Patankar and Spalding, 1972]. The algorithm is utilized in commercial
computational fluid dynamics (CFD) applications, e.g. in Audodesk CFD
[Autodesk-Inc., 2018] and Ansys [Ansys-Inc., 2018].

For a computation by finite volumes the established application Flow3D
1each 3D cell shares a face to one cell east, west, north, south, up and down
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Figure 5: Steps of the SIMPLE (left) and SIMPLER (right) algorithm
[PAT, 1980] of the finite volume method (FVM) for solving fluid flows. Both
approaches do pressure and/or velocity corrections inside one single time
step [Versteeg and Malalasekera, 2007].

[Flow Science Inc., 2018] was chosen to create a ground truth of the fluid
flow. The software allows to compute the full 3D solutions and supports
advanced features, such as different boundary materials (roughness), ero-
sion, sediment transport, and turbulence. Here, only one single material
was setup for the river-bed. The advanced features might become interest-
ing for future comparisons.

2.4 Smooth Particle Hydrodynamics
The SPH method is a Lagrangian method, were particles model the fluid
body. The discretization is moving with the flow. Over the Eulerian meth-
ods, this has the advantage to not waste unused discretization space, where
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Figure 6: Left: Lagrangian methods model the fluid with moving ele-
ments, e.g. particles. Right: Typical weighting kernels used in a particle
neighborhood for integration in the SPH method, with a support radius
h = 1.0. A smooth kernel is usually used for the pressure field and a spiky
kernel for the viscosity field.

no fluid is present. Each particle represents an discrete element of the fluid
body, where field values are stored and computed: velocity, position, and
pressure. When evaluating field quantities always a small neighborhood is
taken into account. Fields are ’smoothed’ over the neighborhood by using
a radial weighting functionW (r, h) called kernel, as illustrated in Figure 6,
with r the radius and h a fixed support radius defining the kernel size. A
particle itself has a radius and density. But, the density field quantity also
depends on the number of, and distance to particles in the neighborhood.
Thus, the support radius is defined larger than the particle radius. It is
set to 4 times larger in this work. For the computation of the movement of
each particle, first the density field is computed, thereon the pressure field,
leading to forces and acceleration and, finally, to a velocity. The velocity is
then used for a discrete forward time step yielding new particle positions.
This procedure is categorized as force-based method.

One core principle applied in the SPH is the integral interpolation of a
field quantity. A field value of field Φ of a fluid domain Ω at certain position
x is expressed as an integral:

Φ(x) =

∫
Ω

Φ(x′)δ(x− x′)dΩx′ (13)

with δ being the Dirac delta function. In the SPH method The Dirac delta
function is approximated by a smooth kernel function W (x, h), especially
to ensure continuity and differentiability of the field function. In the limit
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of the support radius h of the kernel it is becoming the Dirac delta function:

lim
h→0

W (x− x′, h) = δ(x− x′) (14)

For small values of h the kernel can now be used for approximation:

Φ(x) ≈
∫

Ω

Φ(x′)W (x− x′, h)dΩx′ (15)∫
Ω

Φ(x′)

ρ(x′)
ρ(x′)W (x− x′, h)dΩx′ (16)

Φ(xi) = Φi ≈
∑
j

Φj

ρj
ρjVj︸︷︷︸
mj

W (xi − xj, h) (17)

with j denoting the index of the neighboring particles of particle i and Vi
is the volume. As mentioned before, the first step in the SPH method is
computing the density field. Here, when inserting ρ as a field quantity
(17) simplifies to:

ρi =
∑
j

W (xi − xj, h)mj (18)

Therefrom, the pressure field is computed. In our case we focus on the
predictive-corrective incompressible SPH (PCISPH) method and utilize the
pressure update from [Solenthaler and Pajarola, 2009]:

pi =
ρ0

7

(( ρi
ρ0

)7 − 1

)
, (19)

known as the equation of state (EOS), originally from [Batchelor, 1967] with
the tuning parameter γ set to 7. To get partial derivatives of a field quantity,
in the approximation (17), just the kernel function has to be derived:

∂Φ

∂x
=

∑
j

Φj

ρj
mj

∂W

∂x
(20)

Dropping viscosity from (12), the acceleration can be expressed by:
dv

dt
= −1

ρ
∇p+ g (21)

(22)

To write the acceleration equation in a conserving form for linear and an-
gular momentum, it can be written as [Monaghan, 2005]:

∇p
ρ

= ∇
(p
ρ

)
+

p

ρ2
∇ρ (23)
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Both additive terms can be approximated by using (17) and (20):

∇
(p
ρ

)
=

∑
j

mk
pj
ρ2
j

∇W (x− xj, h) (24)

∇ρ =
∑
j

mj∇W (x− xj, h) (25)

dvi
dt

= −
∑
j

mj

(pj
ρ2
j

+
pi
ρ2
i

)
∇W (ri − rj, h)︸ ︷︷ ︸

Wij

(26)

Now, yielding a discrete formula for the pressure computation. The new
position for each particle is then computed by:

xi(t) = xi(t− 1) + vi(t− 1)∆t︸ ︷︷ ︸
∆xi(t−1)

(27)

This is the SPH method in a very simple form. We need to extend the
method further for the purpose of river simulations. The handling of bound-
aries and the property of the incompressibility of water are required. The
work of [Solenthaler and Pajarola, 2009] extends for incompressibility in an
efficient way. First, a normal SPH step is computed as a prediction. Via the
velocities v∗i and positions x∗i predicted densities ρ∗i are estimated. By look-
ing at its derivation from ρ0 a pressure correction can be obtained replacing
the pressure used for the time integration step and preserving incompress-
ibility. The method is iterative and requires a few steps for the pressure
correction. Still, it enables to keep the time step size for the main posi-
tion step large, compared to earlier methods. A positional update is now
formulated analytically by the forces Fi:

∆xi = ∆t2
Fi
m

(28)

A simplification is introduced: neighbors have equal pressure p̃i and that
the density is the rest density ρ0. To reach incompressibility it is required
that two neighboring particles reach the same density and, finally, ρ0, from
(26) and (28):

Fi = −
∑
j

mj

( p̃i
ρ2

0

+
p̃i
ρ2

0

)
∇Wij = −m2 2p̃i

ρ2
0

∑
j

∇Wij (29)

∆xi = −∆t2m
2p̃i
ρ2

∑
j

∇Wij (30)
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When looking at one single pair of particles: particle j is influenced by the
pressure of i:

∆xj|i = ∆t2m
2p̃i
ρ2

0

∇Wij︸ ︷︷ ︸
Fj|i

(31)

According to [Solenthaler and Pajarola, 2009], this can be used to correct
the pressures by inserting (30) and (31) into:

∆ρi(t) = m
(
∆xi(t))

∑
j

∇Wij −
∑
i

∇Wij∆xj(t)
)

(32)

p∗i =
∆ρi(t)

∆t2m2 2

ρ2
0︸ ︷︷ ︸

β

(
−
∑

j∇Wij

∑
j∇Wij −

∑
j(∇Wij∇Wij)

(33)

Equation (33) is problematic for dividing by zero in empty neighborhoods.
To achieve a final and stable pressure update, the following term is com-
puted only once for a reference configuration within a full neighborhood:

δ =
−1

β
(
−
∑

j∇Wij

∑
j∇Wij −

∑
j(∇Wij∇Wij)

(34)

p̃i = δ (ρ∗i − ρ0)︸ ︷︷ ︸
ρ∗err

(35)

pi += p̃i (36)

with p̃ the pressure in each prediction-correction step und p the accumu-
lated pressure, when the incompressibility condition is reached.

Finally, boundary particles are introduced, such that a river bed can be
included into the SPH simulation by static particles. Again, first a density
has to be computed. But, a summation is only done over the boundary
particles. For a boundary particle ` and neighborhood boundary particles
k boundary volume element V b is defined by:

V b
` =

mb
`

mb
`

∑
kW`k

(37)

This enables the support for non-uniformly placed boundary particles, as
is natural for particles stemming from a LiDAR measurement. Taken from

15



the method of [Akinci et al., 2012] and adjusted yields the density for a
fluid particle i taking boundary neighborhood particles into account:

Ψb
`(ρ0) = ρ0V

b
` (38)

ρi = mi

∑
j

Wij +
∑
k

Ψb
k(ρ0)Wik (39)

Another term is required for the forces and again two particles must have
similar densities and pressures in incompressible fluids, simplifying (26):

Fij = −mimj
px
ρ2
x

∇Wij (40)

Fik = −miΨ
b
k

pi
ρ2
i

∇Wik (41)

Here, the pressure of a fluid particle i is inserted. Thus, the reaction force at
the boundary depends on the pressure of the fluid particle. The higher the
pressure, the higher the reaction at the boundary pushing the particle back.
Finally, the force per particle i is the sum of the forces of fluid particles j
and boundary particles k, used in the inner correction loop of the PCISPH:

Fitotal =
∑
j

Fij +
∑
k

Fik (42)

2.5 Position Based Dynamics
The concepts of PBD were developed within computer graphics, games
and real-time simulation. Here, performance is more important than high
physical accuracy. In a modern high quality game physically based simu-
lations for different kinds of objects are of interest, and their interactions:
e.g. cloth, rigid bodies, soft bodies, and fluids. PBD allows to simulate
fluids [Macklin and Müller, 2013], but can capture all those aspects of me-
chanical simulations [Macklin et al., 2014]. Besides its versatileness, it is
also numerically very robust - it is unconditionally stable. This three fea-
tures (efficiency, versitaleness, and robustness) made it attractive to be a
choice for an industry implementation directly into the PhysX engine of
NVIDIA via a code called FleX [NVIDIA, 2018].

In PBD, the solver works in a different way as compared to SPH. In SPH
the numerical solution is based on forces - in PBD it is based on positions.
Variables such as acceleration, velocity, and forces can be derived from the
computed positions. The important variables for a fluid simulation are
velocity, mass, external forces, density and pressure.
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Figure 7: Particle methods. Left: PCISPH uses an inner loop per time step
for the prediction of pressure and velocity. Right: PBD uses an inner loop
to recompute constraint vialation and position shift vectors ∆xi.

The key concept in PBD is the use of so called constraints. All defined
constraints have to be satisfied by the simulation state to be valid. Con-
straints are realized as functions and are applied within a particle neigh-
borhood. Two different kinds of constraints are distinguished:

Cj(xi1 , ..., xin) = 0 ... equality (43)
Cj(xi1 , ..., xin) ≥ 0 ... inequality (44)

with j ∈ [1...M ] the index ofM different constraints, n the number of neigh-
borhood particles around xi, and i ∈ [1...N ] the index of N particles of a
dynamic object. A constraint is satisfied if C holds for all n particles. In
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each time step of a PBD computation, for every particle, a new position
xi is estimated based on a gravitational force, and a preliminary velocity
derived from the previous time step. Then, the estimated positions are
iteratively corrected, such that all the involved constraints are satisfied.
An iterative process is necessary, since a constraint correction at one po-
sition, might introduce a violation at a different location or of a different
constraint. From the final corrected positions of the new time step the ve-
locities are computed, retrospectivly. For fluid simuation, the constraints
have to be formulated such that they model its physical behavior. Here,
the driving constraint is a density constraint and a boundary interaction
constraint. In the correction step positions are corrected in direction of the
gradients of the constraints. This step is called constraint projection.

In practice, the method works as follows, as described in [Schmidt, 2017]
and [Macklin and Müller, 2013]. First, a predicted velocity and a predicted
position is computed:

v∗i (t) = vi(t− 1) + ai(t− 1)∆t (45)
x∗i (t) = xi(t− 1) + v∗i (t)∆t (46)

with ∗ denoting the predicted variables, particle velocities vi, accelerations
ai and time t. Using the preliminary particle positions x∗, a density con-
straint has to be met:

Cdens(x
∗
i1
, ..., x∗in) = ρi/ρ0 − 1 (47)

Ci(x
∗
1, ..., x

∗
n) = ρi/ρ0 − 1 (48)

with ρ0 the rest density of water and ρi. Sub indices can be avoided by
using the notation in (48). The index ofC now denotes the particle location
of the constraint. Since just one constraint is used here no constraint index
is required. The density at particle i is formulated via the SPH density
estimator (18). For the case of the river simluation, the density equality
constraint was changed into an inequality constraint. Only high densities
are corrected. Low density regions, such as particles at the free surface,
have only a little impact on the overall flow behaviour at that scale.

In PBD one is solving for the correction of positions. Thus, the position
x∗ and its position correction ∆x are separated:

C(x∗ + ∆x) ≤ 0 (49)

With a series of Newton steps along the constraint gradient:

∆x = ∇C(x∗)λ (50)
C(x∗ + ∆x) ≈ C(x∗) +∇C(x∗)T∆x ≤ 0 (51)
C(x∗ + ∆x) ≈ C(x∗) +∇C(x∗)T∇C(x∗)λ ≤ 0 (52)
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The gradient ∇C can be estimated by borrowing from the SPH method
[Monaghan, 1992]. The pressure gradient with respect to a particle k is:

∇xkCi =
1

ρ0

∑
j

∇xkWij (53)

Depending if k is a neighboring particle or not (53) has two cases:

∇xkCi =
1

ρ0

{
m
ρ0

∑
j∇xkWij, for k = i (at particle)

−m
ρ0
∇xkWij, for k = j (in neighborhood)

(54)

Inserting into Equation (52) and solving for λ:

λi = −Ci(x
∗
1, ..., x

n)∑
j |∇jCi|2

(55)

Because of the non-linear constraint function and its vanishing gradient at
the kernel boundary, this equations causes instabilities when particles are
about to separate. This can be cured by introducing an additional term,
or by using a pre-computed correction scale based on a reference particle
configuration in a filled neighborhood, which was done in this work. The
position correction at particle i, including also corrections from neighbor-
ing particle density constraints (λj) is now given as:

∆xi =
1

ρ0

=
∑
j

(λi + λj)∇Wij (56)

x∗i (t) = xi(t− 1) + ∆xi (57)
v∗i (t) = ∆xi/∆t (58)

The new x∗ is checked by the constraint again, and if valid for all particles
the actual time step is executed (xi = x∗i ). Boundaries are also handled via
the density constraint by utilizing Equation (54) and replacing m with the
boundary density dependent parameter Ψb, see (38):

∇kCi =
Ψb

ρ0

∑
b

∇Wib (59)

In contrast to the original PBD method each constraint is solved indepen-
dently in a Jacobi fashion. Neighborhoods are updated once in a time step
and not within the iterative constraint projection and correction loop. Fig-
ure 7 illustrates the algorithm compared to PCISPH.

19



3 River Section and Data Preparation
River Section: A small river section was selected from a surveying project
and chosen for the comparison. For a start, it should fulfill several condi-
tions to ease computations and simulations:

• stable and mostly non-turbulent flow conditions
• quite straight river axis
• trapezoidal cross-section geometry
• good coverage by LiDAR echoes of the wet ground and water surface
• high density of LiDAR echoes

Therefore, a river section downstream of a backwater region and a curve
was chosen. The length of the chosen section has a quite straight river-axis
and a length of about 500[m], see Figure 8. The full surveying project is of
about 25[km] length, a rather small project.

Data Preparation: Ground points have been already separated from the
rest. A hydraulic mesh generated from the LiDAR ground points was also
already available from HydroVish [Airborne Hydromapping GmbH, 2018].
All the availabe data was then cut and exported using the software, while
treating the point cloud and the mesh separately. The ground mesh was
converted into a OBJ file for further editing.

Figure 8: Selected river section. A section after a curve was chosen flowing
along a straight pathway. Flow conditions are simple with minimal turbu-
lence effects. Also, the data acquisition has a very good coverage and, thus,
many laser echoes on the wet ground and water surface.
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Figure 9: Separated ground points and generated mesh. The software
HydroVISH [Airborne Hydromapping GmbH, 2018] was used for LiDAR
preparations and data export. The mesh (right) is a triangular adaptive
mesh, adjusting to finer details in the river-bed.

Figure 10: Manual mesh operations in Maya. A cuboid section was axis-
aligned and closed by border-edge polygon-extrusion and vertex-welding.

Maya 8.5 [Autodesk Inc., 2018] was used for manual mesh operations. The
triangular mesh exported from HydroVISH was loaded as an OBJ file into
the modeling software. To further ease the simulation workflow and set-
ting boundary conditions, the mesh was translated to the coordinate origin
and rotated, such that the river-axes are aligned to the Cartesian coordinate
system axes. Further, a rectangular region was cut out. Two different ver-
sions of the mesh have been prepared. An open surface mesh capturing the
river bed, and a closed mesh. The closed mesh was generated by extrud-
ing the open border edges downwards, flattening, and closing the hole, see
Figure 10. The meshes are used as solid boundary conditions in the sim-
ulations. The closed mesh is required by Flow3D and the open mesh was
used for the particle methods. They were exported from Maya as OBJ files
and further converted to STL, to enable the data import into Flow3D.

The particle code requires boundary particles and could not load a mesh
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Figure 11: Retopology of the adaptive triangular mesh. A quad mesh was
generated using the method and tool of [Jakob et al., 2015]. Top: input
mesh and directional field analysis. Bottom: uniformly distributed result.

file directly. To create a comparable scene for the particle simulation, first,
a finer resolution mesh was computed from the mesh used in the Flow3D
simulation. A retopology to a quad based mesh was done using the tool2
and method by Jabok Wenzel [Jakob et al., 2015]. The face count was in-
creased from 2500 to 25k and 50k yielding almost rectangular grid cells of
about 0.3[m] and 0.2[m] size. Figure 11 shows the process of mesh refine-
ment using the field aligned generator. The particle code was extended to
load an OBJ file and create a boundary particle for every vertex.

4 Computational Setups and Execution
Finite Volume Simulation: For the finite volume simulation the software
Flow3D Version 11.1.4.2 win64 was applied. It is a well-established simula-
tion software for hydraulics and environmental engineering. Over a hun-
dret technical publications utilizing Flow3D and about fifty already pub-
lished in 2018 can be found on their web-page [Flow Science Inc., 2018].

For the setup, first, a new simulation project was created and the STL
mesh of the river bed loaded as a solid object component. The STL file
needs to be a closed mesh. An open mesh will be displayed but ignored
as a simulation boundary. A material of coarse sand was assigned to the

2https://github.com/wjakob/instant-meshes
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Figure 12: Simulation setup in Flow3D: river bed boundary (grey), initial
fluid region (transparent blue box), rectangular volume source (yellow ar-
row and grey plane), and computation grid region (cyan out lines).

river bed. Additionally, a mean grain diameter of 0.01[m] was configured
in the simulation pre-check. The computational grid was adjusted to the
geometry defined by the bounding box from (−20,−100,−1) to (20, 160, 8)
and 200000 cells for mesh generation. Flow3D finally divided the space into
53× 311× 13 cells, yielding 214279 cells of size 0.75[m]× 0.69[m]× 0.83[m].
Boundary conditions on the grid were chosen as wall or open border:

Xmin: wall Xmax wall
Ymin: wall Ymax open
Zmin: open Zmax open

The fluid was set as water at 20◦C. In the initial condition configuration a
fluid region within (−6,−100, 0) to (6, 160, 4) was set up as a breaking dam
to quickly fill the river bed with some water. A fluid source with a constant
volume rate was added upstream as a rectangle facing upwards at position
(−6, 0,−100) with length 39[m] and width 20[m].

The software modules for gravity and mass source were activated. The
numerical solver was configured to use the default implicit method. A
maximum time for the solution was set to 100 and an additional break-
ing condition was enabled to stop if a steady state in the flow simulation
is reached. The first setups of the simulation setup took mostly over 4
hours, since a higher grid resolution was used and, most importantly, no
initial fluid region was created. Thus, the river bed had to fill up from the
mass source alone. By adding the initial fluid region, the simulation be-
came more stable and steady states were reached much faster, in about 20
minutes. The parameters of the simulation, mainly the rate of the mass
source, were tuned manually until the water table at the cross section y =
140[m] matched the reference value of 3.03[m] from the LiDAR measure-
ment. About 30 simulation runs were executed to reach that goal. Finally,
the simulation output provides results at five different time values: 0.0,
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Figure 13: Kinetic energy, time step size, and stability limit plotted over
simulation time. Top: the velocity of the fluid starts to converge to a steady
state at time ∼ 50. Bottom: the time steps size varies around ∼ 0.03.

20.0, 40.0, 60.0, and 75.1.
Figure 12 shows plots over simulation time. The plot on top illustrates

the kinetic energy, thus, velocity over time. Velocity is high at the begin-
ning, when the initial fluid region is evening out. Thereafter, the fluid
slows down and starts to accelerate due to the slope, the gravity and the
mass source placed up-streams. At a simulation time of about 50[s] it is
about to reach stability. The simulation finally stops at 75[s]. The lower
plot shows the chosen time step sizes and a stability limit of the numerical
solver. The time step size is adaptively chosen between 0.005 and 0.055.

The computation was run on a Windows 8.1 64 bit system with six core
Intel Xeon X56650 @ 2.67GHz and 24GB RAM under the hood. The log
of the simulation is provided in Appendix A.1. Flow3D used one of the
available 12 hyper-threads for its numerical computation, which took 13
minutes and 29 seconds.
Particle Simulations: For the particle simulations a custom C++ code was
used and extended within the Visual Studio 17 integrated development
environment. The original codes were developed by [Bender, 2018b] and
[Bender, 2018a], and adjusted for river flow related numerical experiments
in [Schmidt, 2017]. A new fluid simulation program was implemented
for this work, along with some new features required for the study. A
source/sink process was added, which moves particles flowing out of the
simulation bounding box back into a fluid source bounding box, therein, at
a randomized position. Any particle flowing out of the simulation bounds
and, thus, also out at the river down-stream cross section at z = −160, is
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Figure 14: Simulation setup for SPH/PBD: river bed (grey), simulation
bounds (cyan), particle source bounds (yellow), and initial particles (blue).

moved back into the simulation space as a ’rain drop’ in the source bound.
Note that the coordinate system was adjusted in comparison to Flow3D.

In the Flow3D setup gravity was in −z and in the particle code it is now
−y. Accordingly, the river axis, and flow direction, changed from +y in
Flow3D to −z in the particle simulation. Further, a data structure to cap-
ture the most important simulation configurations was created, together
with a save and load features via an ASCII file: ’start.cfg’. Parameters,
such as, a simulation name, the particle radius, the source bounds, the
simulation bounds, the simulation mode, the time step size, etc. can be
configured without compiling the source code. An example is shown in
Appendix A.2. To load the prepared geometry file of the river bed an OBJ
import was implemented. The original code used a much smaller scale
in the simulations. This was adjusted to meet meters as the overall unit
scale. The scaling was introduced as a variable, that now allows to scale
the whole simulation scene with one value. The possibility to store and
load a full fluid state was implemented via ASCII files. For particle vari-
ables CSV files were chosen, and separated into a boundary particle and
a fluid particles file. They can be directly opened and inspected, e.g., in
a text editor or a spreadsheet application. Meta information is stored in a
different file as key-value pairs, similar to the configuration file. Loading a
previously computed fluid states reduces waiting times in case of parame-
ter variation, or debugging the simulation code. To enable creation of an-
imated movies of the simulation a numbered image output rendered into
PNG files was added. Finally, the computational loop was equipped with
an output of gathered information per simulation time step into an ASCII
CSV file: mean value and standard deviation of particle density, pressure,
and velocity are stored. Figure 15 mid and left shows theses values of a
final simulation run via line plots.

The simulation setup is shown in Figure 14. The simulation bounds
are set to (−20,−1,−160) to (20, 6, 0) and the bounds of the fluid source to
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Figure 15: Mean (m) and standard deviation (s) plots per time step of the
PBD simulation. The velocity component vz and the density ρ are illus-
trated. Right: ρ becomes stable at ∼ 800 steps. Mid: Vz becomes stable at
∼ 1200 steps. Left: The first derivative of the mean and the standard devi-
ation of Vz. In the logarithmic plot the derivatives go below 0.01 at∼ 1200.
The curves were smoothed using a median and a local averaging filter.

(−8, 4,−40) to (8, 10,−1). Boundary particles do not change position and
have been loaded via the retopo OBJ file. Wall boundaries are set up in the
upstream area at z = 0 and on the sides downstream for 20[m]. Initial water
particles are uniformly placed as a breaking dam within (−10, 1,−143) and
(14, 5,−1). Some of the water particles are initially placed below the river
bed, but after a few simulation steps they go out of range and are moved
into the source box. Particles were placed quite low on the surface to start
with a low potential energy in the fluid.
PBD Simulation: The PBD simulation was run using different steps sizes
and two different particle radii. Several tries were necessary for manual
parameters variation. Finally, the water table height of ∼ 3.03[m] at the
reference cross section z = −140 in a steady state was reached. Figure 15
illustrates the mean and standard deviations for density, pressure, and z-
velocity of the particles over simulation time steps. The mean density is
used to analyze the state of the simulation. It should be stable and close
to the water density of 1000[kg/m3]. A steady flow state, however requires
the velocity field to be stable. The mid column shows the mean and stan-
dard deviation of the velocity z component. The z-axis is aligned with the
river axis. This relates to the kinetic energy plot of Figure 13. Here, the
convergence is smoother. To find a criterion for a possible steadyness de-
tection, the first derivatives of the velocity component’s mean and standard
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derivation were computed by central differences (top left). A logarithmic
scale of its absolute values reveals how the changes in velocity are decreas-
ing (bottom left). The mean and the standard deviation go down to below
0.01 at ∼ 1200 time steps - corresponding to a simulation time of 60.0[s].
The values in the logarithmic plot were smoothed by a median filter of size
5 and a local averaging of radius 10 samples. The steady simulation time
is similar compared to the Flow3D simulation.

The computation was done on the same hardware system. But the parti-
cle code used all of the hyper-threads for its numerical computation, which
took about 60 to 100 minutes, dependent on where stability is considered.
Note that, the particle method is especially suited for GPU implementation
which creates a speedup of one or even two orders of magnitude.
SPH Simulation: The PCISPH simulation code required major corrections
and rewrites, especially, in the pressure correction (PC) loop. At the time
of writing, numerical stability was achieved with corrected scales, at large
time stepping of 0.01 and a manually configured δ = 1000, see (34). In free
fall 3 iterations of the PC loop was reached. Using 200k particles iterations
can go up to 500 when colliding with the ground. Computation time per
time step ranges from 0.7[s] to 113.2[s]. More fine tuning and optimization
is required here, but by means to the thesis’ scope left for future work.

5 Results
Volumetric Flow Rate Estimation: The flow and mean velocity at the refer-
ence cross section of the river section was first estimated using an analytic
hydraulic equation. The Gauckler-Mannig-Strickler equation (GMS) was
used for that purpose [Manning, 1891]:

Q = Avm = A · kSt,m ·R2/3
hyd · I

1/2
0 (60)

Rhyd =
A

U
(61)

kSt =
26

d
1/6
90

(62)

kSt,m =

(
U∑
Ui

k
3/2
St,i

)2/3

(63)

It is based on the continuity equation and valid for flowing water in open
cross sections. It expresses the mean velocity by the roughness coefficient
kSt,m, the hydraulic radius RHyd, and the slope I0 of the flume. For the
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Position [m] B H b1 h1 b2 h2 n1 n2
120 12.15 0.10 7.90 4.30 6.60 3.30 1.84 2.00
130 11.85 0.05 8.15 4.05 6.55 3.35 2.01 1.96
140 11.45 0.05 9.55 3.80 6.00 3.40 2.51 1.76
150 11.00 0.05 8.20 4.45 7.65 4.45 1.84 1.72
160 11.75 0.05 6.50 2.95 5.85 2.95 2.20 1.98

mean 11.64 2.08 1.88

Table 1: Cross section dimensions in numbers yielding mean width B and
mean inclinations n1 and n2.

chosen river section, I0 and RHyd can be both estimated from the geom-
etry captured by the bathymetric LiDAR. Five cross sections around the
reference cross section at z = 140 were chosen: 120, 130, 140, 150, and 160.
A trapezoid was fitted manually to the cross sections, see Figure 16. The
widths and inclinations of the embankment are collected in Table 1. The
mean width B and the mean inclinations n1 and n2 were computed by the
arithmetic mean. With the known water table height from the measure-
ment, the area, the circumference are computed and yield the hydraulic
radius RHyd, see (67).

Figure 16: A trapezoid was chosen to represent the measurement.

Figure 17: Trapezoids (black line) were manually fitted to five selected
cross sections around the reference at z = 140[m].
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Figure 18: Five longitudinal sections of the river bed x: −6, −3, 0, 3, 6.

h = 3.03[m] (64)
A = B · h+ h2 · n1/2 + h2 · n2/2 = 53.45[m2] (65)

U = B + h
√

1 + n2
1 + h

√
1 + n2

2 = 25.09[m2] (66)
RHyd = 53.45/25.09 = 2.13 (67)

To estimate the slope of the flume longitudonal sections were made. The
slope was computed as the mean of five sections (x =−6,−3, 0, 3, 6) around
the river axis using the y values at z = 0 and z = 160:

I6 = (0.2− 0.07)/160 = 0.0008

I3 = (0.24− 0.13)/160 = 0.0007

I0 = (0.57− 0.078)/160 = 0.0013

I−3 = (0.8− 0.02)/160 = 0.0049

I−6 = (1.29− 0.07)/160 = 0.002

Iavg = 0.00194 (68)

Now, all parameters except of the roughness of the river bed are fixed.
The roughness can be estimated by the diameter of the sediment. No soil
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measurements or other estimatations were available, thus a variation and
rough guess was done by looking at some photographs of the river close
to the chosen section. No larger grain seems to be present and thus rather
small diameters for d90 were used for a parameter variation. The grain di-
ameters for the inclination was estimated as half the size of the bed. There-
from, the Strickler coefficient for the inclination and bed were computed,
yielding the mean coefficient KSt,m weighted by the circumferences, see
(63). The results of the variation are gathered in Table 2. The mean veloc-
ity vm varies from about 1.8 and 2.9 [m/s] for the chosen diameters. This
defines a first reference and order of magnitude to be excepted from the
numerical computations.
Flow3D Simulation: The Flow3D (F3D) simulation was run locally with
a maximum simulation time t = 100[s] and an early break condition in
case of reaching a steady state. The textual simulation output is added to
appendix A.1. It reached steady a state at t = 75[s] with a computation
time of about 14[mins]. Figure 19 shows the results of different time steps
at the reference cross section. To reach a water table of about 3[m] several
simulations runs have been performed and, finally, a volume source rate of
108 chosen as the best fitting solution. The river-axis velocity component is
in the interval from 0.96[m/s] to 2.14[m/s]. To compute the mean velocity
vm a text-file output of the cross section was created including the result
fields: positions x, y, z, fraction of fluid, and velocities u, v, w. Taking the
fraction of fluid f per cell i into account:

vm =

∑
i fivi∑
i fi

=
229.4

110.9
= 2.07[m/s] (69)

A = volcell
∑
i

fi = 0.43 · 110.9 = 47.64[m2] (70)

Q = Avm = 98.61[m3/s], (71)

d90S d90B kSt,S kSt,S kSt,m Rhyd I Q vm
[mm] [mm] [m

1
3/s] [m

1
3/s] [m

1
3/s] [1/m] [%] [m3/s] [m/s]

1.00 2.00 26.00 23.16 24.38 2.13 0.10 68.22 1.28
1.00 2.00 26.00 23.16 24.38 2.13 0.20 96.48 1.81
1.00 2.00 26.00 23.16 24.38 2.13 0.19 95.03 1.78
0.50 1.00 29.18 26.00 27.36 2.13 0.19 106.66 2.00
0.01 0.25 53.97 32.76 39.49 2.13 0.19 153.95 2.88

Table 2: Mean velocity and flow rate computed by the Gauckler-Mannig-
Strickler equation (GMS) with varying, rather small, grain diameters.
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Figure 19: Results of a final Flow3D simulation at different time steps and
the reference cross-section at y = 140[m]. The simulation was fine tuned
to meet the water table height given by the LiDAR measurement. Color
shows the velocity component in river-axis direction and the black lines
illustrate velocity components in-plane.

with volcell = 0.75 · 0.83 · 0.69.
PBD Simulation: The PBD simulation was performed locally on 12 cores
and the mean velocity and density trace over time. When a steady state
was reached, the state of the simulation was stored as ASCII CSV result
files. Figure 20 shows different time steps from the simulation. Similar to
the Flow3D setup the initial fluid is defined in a cuboid region.

To analyze the CSV files a mini application was developed to visual-
ize cross sections in a plotting style, similar to the 2D output module of
Flow3D. The whole state of one time step is read, filtered to cut out cross
section particles and plotted. By choosing F# along with the FSharp-Data
and OxyPlot libraries, a stand alone multi-platform tool can be developed
in a few lines of code. The main function including e.g. data filtering and
mouse controls is added to the Appendix A.3 and shows the compactness
of the language. Columns of the CSV files are selected for plotting by theirs
names. Circles are plotted for each particle using a similar color-map as
Flow3D. Arrows visualize the in-plane velocity components. The velocity
component in river-axis is shown by the colors, and mean value is com-
puted and added to the title. An interactive mouse control allows to walk
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Figure 20: Results of a final PBD setup at different time steps. The simu-
lation was fine tuned to meet the water table height given by the LiDAR
measurement at z = −140[m]. Color represents the velocity in −z direc-
tion. Bottom: Final simulation state at simulation time t = 60[s].

through the results along the z-axis, here, corresponding to the river-axis.
Figure 21 illustrates such a plot at the reference cross-section at z =

−140 of a final PDB simulation. The river-axis velocity component is in the
interval from 0.5[m/s] to 3.4[m/s]. The cross section depth is the diameter
of a particles. With N , the number of cross section particles and w the
velocity component in z direction:

vm =

∑
iwi
N

= 2.42[m/s] (72)

A = Nr2π = 397 · 0.22 · π = 49.89[m2] (73)
Q = Avm = 120.74[m3/s], (74)

The smallest velocities are at the boundaries and highest at the water table.
Comparison: The results of three different methods are gathered in Ta-
ble 3: GMS, FVM, and PBD. Mean velocity, flow rate, water table height,
number of discretization elements, element size, and computation time are
listed. Overall, the velocities have the same order of magnitude and are
in the interval from 2.0 to 2.42. GMS and F3D coincide better. The PBD
is about 16% higher compared to the F3D for the velocity and 22% to the
flow rate. When comparing the PBD-runs 10 and 13, where the time step
size was halved, one notices almost no difference. Generally, the time step
size of F3D and PBD are quite similar. Note that time step sizes for other
SPH methods are usually located around 0.001, but PBD allowed for larger
steps. When looking at PBD-runs 10 and 20, where the particle radius was
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Figure 21: Cross section of a PBD-run 20 at z = −140[m]. The depth is
equal to the particle diameter. The velocity is illustrated as color-map in
river-axis component and via black arrows for the in-plane components.

Method- Time vm A Qm Hw #Elems Size Time
Run Step [m/s] [m2] [m3/s] [m] [m] [min]
GMS-1 - 2.00 53.45 106.66 3.03 - - 240
F3D-30 0.03 2.07 47.64 98.61 3.0 133/214k 0.5 13.5
PBD-10 0.05 2.75 52.3 143.25 3.18 185/60k 0.3 37
PBD-13 0.025 2.75 52.6 144.65 3.18 186/60k 0.3 37
PBD-14 0.05 2.58 38.80 100.18 2.7 309/198k 0.2 60
PBD-15 0.05 2.51 49.51 124.27 3.3 394/216k 0.2 70
PBD-20 0.05 2.42 49.89 120.74 3.0 397/216k 0.2 60

Table 3: Simulation parameters and results at the reference cross section of
all computational methods. The two values in the #Elems column repre-
sent the number of elements within the reference cross section followed by
the total number of elements used in the simulation.

reduced from 0.3[m] to 0.2[m], the fluid slows down, coming closer to the
F3D and GMS values. Further decreasing the particle size could improve
the results. This comes at cost in computation time. But, computation time
did not increase linearly - elements size was doubled but computation time
increased only by a factor of 1.6. The final PBD-run 20 takes about 4.44
times longer than the F3D simulation. Note that the F3D simulation was
executed on a single core and the PBD on 12 cores. However, PBD is suited
very well for GPU computation.

33



6 Conclusion and Future Work
Conclusion: A bathymetric LiDAR dataset of a river was chosen and a
short river section selected, which fulfills conditions easing manual and
numerical computations thereon. The section was cut out containing the
separated ground and water points and a hydraulic triangular mesh. The
mesh was further prepared by aligning the river axis to the Cartesian co-
ordinate axes. A uniformly refined mesh was created by retopology of the
adaptive original. A reference cross section was chosen 20[m] up-stream of
the end of the river section and its water table height was determined from
the point cloud.

Numerical simulations were prepared. A simulation in Flow3D was
setup for results based on the finite volumes method. Several simulation
runs were conducted and tuned manually, such that the water table as the
reference cross section matches the measured value. A simulation setup in
a custom developed C++ code was set up for results based on the position
based dynamics and the smooth particle hydrodynamics methods. The
code was extended by features to enable and ease river flow based simu-
lations, e.g. save/load of the fluid state, source/sink procedures, and con-
vergence variables output. A manual calculation and estimation of mean
velocity and flow rate was done utilizing the Gauckler-Mannig-Strickler
formula for free surface flows in a trapezoid shaped channel. This serves
as a plausibility reference for the numerical computations.

Finally, the results are compared. All results are located in the same or-
der of magnitude and are located within a variation of 22%. Also, there are
still some uncertainties involved. Especially, the grain diameters (rough-
ness) are just estimated. There is no roughness model in the PBD, but
maybe it even is not required, when the LiDAR resolution is high enough.
One has to keep in mind, that the implicit finite difference method used
within Flow3D has been fine tuned and optimized for more than a decade.
The PBD code is new and optimization will improve the early results.
Future Work: Firstly, a flow simulation using the LiDAR points directly as
boundary condition can now be done - everything is prepared therefore.
Generally, more river sections capturing different flow features should then
be selected for investigation: curves, widenings, weirs, falls, bifurcations,
etc. Further work can improve the PBD/SPH computations. Solving within
the simulation using both methods in combination is expected to have bet-
ter results in critical (e.g. turbulent) flow regions by PCISPH and a higher
computational efficiency by the PBD in calm flow regions. PBD/PCISPH
could be extended to include a roughness parameter on the boundary,
based on geometry and LiDAR signal parameters. Maybe, this is not even
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necessary and naturally captured by the geometry of laser scan with high
density. In a river flow simulation, one usually is interested in reaching a
steady flow state of the fluid. Therefore, an adaptive step size control can
be applied to faster converge to a steady solution. E.g. after the first initial
phase, time step size could be enlarged to speed up the acceleration pro-
cess of the fluid body, and in the final steps shrinked to improve quality
and capture finer details of the flow, [Goswami and Pajarola, 2011]. Also,
methods could be switched over time. Particles need not have to have the
same radii. In calm flow regions particles could be merged, further, reduc-
ing computational complexity. SPH/PBD methods are especially suitable
for porting to the GPU. In a final step such a port can produce a speed-
up of up to two orders of magnitude in computation time, which would
then enable a mesh free flow analysis of large river sections. Finally, the
fluid code could be extended for an automated parameter variation until
it meets the water table at reference cross sections or minimize the error
for the whole measured water surface. Grain and thus sediment transport
could be directly modeled by introducing grain particles on the river bed
having a higher density. Maybe, the fluid simulation can also be used to
improve the LiDAR data, by solving an inverse problem. In case of data
holes, preliminary boundary particles could be placed and their positions
shifted and optimized such that the flow parameters and the water surface
are matched best. This would decrease the uncertainty for data fill-ins.
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A Appendix

A.1 Flow3D Simulation Output Overview
Preprocessor Starting

processing options and properties

processing mesh

processing geometry components

processing non-moving component 1 in mesh block 1

processing cad data for subcomponent 1

total, fluid and solid sub-domain cell counts:

254774 182910 45547

processing initial conditions

processing fluid initialization regions

processing baffles

setting up remaining array data

evaluating mesh boundary conditions for block 1

initializing fluid boundary conditions

processing graphics and output requests

processing particle data

processing user-defined plot requests

producing preprocessor plot data

successful completion of preprocessor

Preprocessor Done

Solver starting

trying to check out a serial token

License token checked out for simulation: hydr3d

Number of core license tokens checked out: 0

program title : FLOW-3D

program version : hydr3d version 11.1.4.2 win64 2016

version id : double

DOUBLE precision version

process identification number for this job= 1

job name: vkqb

problem date: 10/25/2018

problem time: 13:13:29
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Title

*** estimated uncompressed solver output file size (flsgrf): 79 mb ***

*** running serial code ***

***

restart and spatial data available at t= 0.00000E+00

***

-------------------- --------------------- --------------- --------------------------- -------------------------------------

progress time step pressure fluid #1 performance

sim_time cycle delt dt_stbl/code iter res/epsi volume %loss frac el_time %PE clk_time est_rem_time

-------------------- --------------------- --------------- --------------------------- -------------------------------------

0.00000E+00 0 1.40E-01 1.40E-01/fs 0 0.00E+00 9.6878E+03 +0.00E+00 0.16 00:00:07 100 13:13:30 ...

convective flux exceeded stability limit

at t= 1.4032E-01 cycle= 1 iter= 4 delt= 1.4032E-01 mesh block 1

restarting cycle with smaller time step

2.00965E+00 115 2.00E-02 2.04E-02/cy 1 3.24E-01 9.7045E+03 +5.01E-01 0.16 00:00:50 69 13:14:13 01:11:19

4.01054E+00 179 3.72E-02 3.72E-02/cx 2 8.34E-01 9.8743E+03 +4.34E-01 0.16 00:01:18 66 13:14:41 00:57:49

6.01503E+00 268 1.76E-02 1.76E-02/cz 1 3.08E-01 1.0134E+04 +2.29E-01 0.17 00:01:58 88 13:15:22 01:00:02

8.02251E+00 413 1.45E-02 1.45E-02/cz 1 2.54E-01 1.0342E+04 +1.48E-01 0.17 00:02:59 76 13:16:22 01:08:38

1.00471E+01 562 2.68E-02 2.68E-02/cx 1 4.53E-01 1.0522E+04 +1.16E-01 0.17 00:03:59 100 13:17:22 01:13:12

1.20540E+01 672 1.13E-02 1.13E-02/cx 1 1.02E-01 1.0710E+04 +1.04E-01 0.18 00:04:44 69 13:18:07 01:12:04

1.40699E+01 817 2.42E-02 2.42E-02/cz 1 1.73E-01 1.0887E+04 +1.01E-01 0.18 00:05:42 59 13:19:05 01:13:47

1.60723E+01 933 1.31E-02 1.31E-02/cx 1 1.97E-02 1.1082E+04 +9.85E-02 0.18 00:06:24 92 13:19:47 01:11:57

1.80728E+01 1087 1.97E-02 1.97E-02/cz 1 1.01E-01 1.1267E+04 +9.82E-02 0.19 00:06:56 98 13:20:19 01:08:37

***

restart and spatial data available at t= 2.00044E+01

***

2.00044E+01 1201 1.39E-02 1.39E-02/cz 1 1.99E-02 1.1444E+04 +9.62E-02 0.19 00:07:19 100 13:20:43 01:04:53

2.00742E+01 1206 1.40E-02 1.40E-02/cz 1 2.16E-02 1.1450E+04 +9.62E-02 0.19 00:07:21 100 13:20:44 01:04:49

2.20961E+01 1323 2.68E-02 2.68E-02/cz 1 1.64E-01 1.1643E+04 +9.46E-02 0.19 00:07:45 100 13:21:08 01:01:28

2.41016E+01 1443 1.01E-02 1.01E-02/cx 1 3.94E-02 1.1833E+04 +9.68E-02 0.20 00:08:10 100 13:21:34 00:58:49

2.61024E+01 1695 6.28E-03 6.28E-03/cx 1 8.23E-03 1.2024E+04 +9.68E-02 0.20 00:09:02 100 13:22:26 00:59:27

2.81051E+01 2122 3.70E-03 3.70E-03/cx 1 3.99E-04 1.2222E+04 +9.76E-02 0.20 00:10:28 91 13:23:52 01:03:22

3.01240E+01 2252 2.72E-02 2.72E-02/cx 1 2.45E-01 1.2414E+04 +9.47E-02 0.21 00:10:56 100 13:24:19 01:00:60

3.21297E+01 2340 2.82E-02 2.82E-02/cx 1 1.81E-01 1.2609E+04 +9.19E-02 0.21 00:11:14 100 13:24:38 00:58:08

3.41304E+01 2410 4.14E-02 4.14E-02/cz 1 5.53E-01 1.2803E+04 +8.84E-02 0.21 00:11:29 100 13:24:52 00:55:15

3.61313E+01 2478 2.40E-02 2.40E-02/cz 1 8.17E-02 1.3005E+04 +9.14E-02 0.22 00:11:43 100 13:25:06 00:52:37

3.81772E+01 2537 4.72E-02 4.72E-02/cy 1 7.99E-01 1.3216E+04 +9.10E-02 0.22 00:11:55 96 13:25:19 00:50:03

***

restart and spatial data available at t= 3.99743E+01

***

3.99743E+01 2581 5.28E-02 5.28E-02/cz 1 5.94E-01 1.3384E+04 +9.63E-02 0.22 00:12:04 100 13:25:28 00:47:53

4.01915E+01 2586 3.36E-02 3.36E-02/cz 1 4.69E-01 1.3403E+04 +9.71E-02 0.22 00:12:05 100 13:25:29 00:47:38

-------------------- --------------------- --------------- --------------------------- -------------------------------------

progress time step pressure fluid #1 performance

sim_time cycle delt dt_stbl/code iter res/epsi volume %loss frac el_time %PE clk_time est_rem_time

-------------------- --------------------- --------------- --------------------------- -------------------------------------

4.22207E+01 2636 4.90E-02 4.90E-02/cy 2 3.99E-02 1.3588E+04 +1.03E-01 0.23 00:12:16 97 13:25:39 00:45:25

4.42455E+01 2685 3.96E-02 3.96E-02/cy 1 5.50E-01 1.3784E+04 +1.07E-01 0.23 00:12:26 99 13:25:49 00:43:22

4.62850E+01 2742 4.79E-02 4.80E-02/cy 1 8.60E-01 1.3988E+04 +1.15E-01 0.23 00:12:38 100 13:26:01 00:41:35

4.83283E+01 2790 4.44E-02 4.44E-02/cz 1 4.91E-01 1.4189E+04 +1.18E-01 0.24 00:12:48 100 13:26:12 00:39:50

5.03297E+01 2844 3.33E-02 3.33E-02/cx 1 1.26E-01 1.4267E+04 +1.19E-01 0.24 00:12:59 100 13:26:23 00:38:18

5.23663E+01 2896 3.92E-02 3.92E-02/cy 1 2.32E-01 1.4257E+04 +1.17E-01 0.24 00:13:10 100 13:26:34 00:36:49

5.44133E+01 2947 4.89E-02 5.00E-02/cz 1 1.49E-01 1.4229E+04 +1.14E-01 0.24 00:13:21 100 13:26:45 00:35:26

5.64670E+01 2991 5.46E-02 5.46E-02/cy 1 2.31E-01 1.4209E+04 +1.12E-01 0.24 00:13:30 98 13:26:54 00:34:03

5.84728E+01 3067 4.59E-02 6.98E-02/cy 1 1.36E-01 1.4193E+04 +1.10E-01 0.24 00:13:47 100 13:27:10 00:33:04

***

restart and spatial data available at t= 6.00063E+01

***

6.00063E+01 3113 2.64E-02 2.64E-02/cz 1 5.45E-02 1.4180E+04 +1.08E-01 0.24 00:13:56 96 13:27:20 00:32:15

6.04916E+01 3132 2.51E-02 2.51E-02/cz 1 6.33E-02 1.4176E+04 +1.08E-01 0.24 00:14:00 99 13:27:24 00:32:02

6.25012E+01 3208 2.74E-02 2.74E-02/cz 1 3.06E-02 1.4153E+04 +1.06E-01 0.23 00:14:16 100 13:27:40 00:31:09

6.45220E+01 3277 3.89E-02 3.89E-02/cz 1 8.37E-02 1.4127E+04 +1.04E-01 0.23 00:14:31 99 13:27:54 00:30:14

6.65458E+01 3326 4.03E-02 4.37E-02/cy 1 1.04E-01 1.4107E+04 +1.02E-01 0.23 00:14:41 100 13:28:04 00:29:13

6.85695E+01 3382 4.54E-02 4.54E-02/cy 1 1.04E-01 1.4091E+04 +9.98E-02 0.23 00:14:52 97 13:28:16 00:28:17

7.05827E+01 3434 2.04E-02 2.04E-02/cx 1 1.93E-02 1.4070E+04 +9.80E-02 0.23 00:15:03 100 13:28:26 00:27:23

7.25913E+01 3520 3.20E-02 3.20E-02/cy 1 2.13E-02 1.4055E+04 +9.62E-02 0.23 00:15:21 99 13:28:44 00:26:44

7.46196E+01 3588 3.53E-02 3.53E-02/cy 1 4.22E-02 1.4039E+04 +9.47E-02 0.23 00:15:35 99 13:28:58 00:25:59

***

restart and spatial data available at t= 7.50595E+01

***

7.50595E+01 3600 3.66E-02 3.66E-02/cy 1 8.52E-02 1.4035E+04 +9.43E-02 0.23 00:15:37 96 13:29:01 00:25:49
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end of calculation at t= 7.50595E+01 cycle = 3600

total fluid mass has become steady

elapsed time = 9.37401E+02 seconds, or

0 days : 0 hours : 15 minutes : 37 seconds

cpu = 8.71109E+02 seconds

date of completion = 10/25/2018

time = 13:29:01

Postprocessor starting

reading general data catalogue

reading mesh block data catalogue 1

reading particle data catalogue

constructing time edit index

processing plot requests

Postprocessor Done

Simulation run complete

A.2 Particle Simulation Configuration File
runNr=0

scale=1

particleRadius=0.2

boundMin=-20, -1, -160

boundMax=20, 6, 0

sourceMin=-8, 4, -40

sourceMax=8, 10, -1

sourceVel=0, 0.1, -0.1

lookAt=-10, -10, -80

observer=10, 10, -200

damWidth=60

damDepth=360

damHeight=10

damStart=-10, 1, -1

sphMode=0

logFlag=0

tss=0.05

name=PBD01
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A.3 F# Plotting Tool

let main argv =

let path = argv .[0]

let mutable zPos = -140.0

let mutable title = sprintf "CrossSection: %f" zPos

let mutable model = new PlotModel ()

let data =

readPoints path "model.part.csv"

"m_x.x" "m_x.y" "m_x.z" "m_v.x" "m_v.y" "m_v.z"

|> Seq.append

(readPoints path "model.bound.csv"

"m_boundX.x" "m_boundX.y" "m_boundX.z"

"m_boundX.y" "m_boundX.y" "m_boundX.y")

|> Seq.toArray

let updateModel( zPos ) =

let w = 0.4

let miMax = ( zPos - w/2., zPos + w/2.)

let filtered =

data

|> Array.filter( fun x ->

(x.z >= (min miMax) && x.z <= (max miMax)))

create filtered (sprintf "CrossSection: %.1f" zPos)

let model = updateModel( zPos )

let plot , win = showChartAndRun title model

let updatePlot () =

plot.Model <- updateModel( zPos )

plot.Show()

plot.MouseWheel.Add (fun ev ->

if ev.Delta > 0 then

zPos <- zPos + 1.0

updatePlot ()

else if ev.Delta < 0 then

zPos <- zPos - 1.0

updatePlot ()

else () )

win.ShowDialog () |> ignore

0
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