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We present a framework using C++ template programming for the
computation of integral geometries such as streamlines, pathlines, geo-
desics or time surfaces. Hereby, common needs are identified and certain
features are shared between different integration geometries minimizing
the overall implementation effort. The implementation is based on a
fiber bundle data model opening the possibility to handle all kinds of
space-time geometries in an unified interface.

8.1 Introduction

Visualization of vector fields is still an topic of active research in scientific visual-
ization. The most widely used approach, visualization via arrow icons, is intuitive
but does not scale to huge datasets, where methods such as fastLIC [Stalling, 1998]
or Doppler speckles [Benger et al., 2009b] are superior. Aside direct visualization
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of the vectors at each data point a common approach is studying features of the
vector field via integral curves and surfaces. The mathematical similarity of these
feature indicators is not necessarily reflected by the actual implementation of the
computation algorithms: the different integration scheme such as space-like vs.
time-like or 1D vs. 2D may easily lead to independent implementations, whereas
it were desirable to use one approach for all kinds of integral computations.

8.1.1 Mathematical Background and Motivation

Let q(s) be a parameterized curve in a manifold M , q : R → M : s 7→ q(s). The
variation of the curve parameter s defines the tangential vector q̇ = dq/ds along
the curve. In computational fluid dynamics (CFD) a vector field typically describes
the motion of fluid particles. Let v be a vector field with the vector v ∈ TP (M)
being an element of the tangential space at a point P of a manifold M . An integral
curve is defined in a space-time manifold M by

q̇(s) = v
(
q(s)

)
with q(0) = σ ∈M (8.1)

and σ the initial seeding point. Let us assume an evolving vector field in 3D
coordinates. A streamline is an integral curve that is tangential to a vector field
frozen at an instant of time, Fig. 8.1a:

q̇(s) = v
(
q(0)t, q(s)x, q(s)y, q(s)z

)
with q(s)t = q(0)t (8.2)

A pathline is evolving over time. It represents the motion of a fluid particle at a
certain point in time, Fig. 8.1b:

q̇(s) = v
(
q(s)t, q(s)x, q(s)y, q(s)z

)
. (8.3)

A bundle of integral curves yields a high dimensional object. An initial space-like
seeding line, σ : R → M : λ 7→ σ(λ), defines an integral surface Σ : R2 → M :
(s, λ) 7→ Σ(s, λ):

dΣ/ds = v
(
Σ(s, λ)

)
with Σ(0, λ) = σ(λ) (8.4)

A line at Σt(s, λ) = const. is called a material-line, see Fig. 8.1c for an illustra-
tion. An initial seeding surface S0(λ, µ) : R2 → M : (λ, µ) 7→ S(λ, µ) defines an
integral-hyper-surface H : R3 →M : (s, λ, µ) 7→ H(s, λ, µ):

dH/ds = v
(
H(s, λ, µ)

)
with H(0, λ, µ) = H0(λ, µ) (8.5)

A surface at H t(s, λ, µ) = const. is called a time surface, illustrated in Fig. 8.1d.
Finite differentiation schemes [Deuflhard & Bornemann, 2002] can be applied

to solve these equations. In our visualization environment we take this common
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Figure 8.1: Different types of integral lines: a) streamlines, b) pathlines, c) material-
line, d) time surface. The illustration shows time evolution in t-axis direction. The
xy-plane is manifold hosting the integral curves.

foundation into account and we develop a template based integration framework
suitable to all kinds of integration geometries in a unified way, sharing the algo-
rithms used for solving differential equations, interpolating data fields and handling
the underlying manifolds. The framework also extends to integrating geodesics on
tensor fields stemming from numerical relativity or Magnetic Resonance Imag-
ing (MRI). Here, the differential equation eq. 8.4 is replaced by the second order
geodesic equation [Ritter & Benger, 2010] using Σ̇ = d/dsΣ(s, λ):

∇Σ̇Σ̇(s, λ) = 0 ∀λ with Σ(0, λ) = σ(λ) and Σ̇(0, λ) = v
(
σ(λ)

)
(8.6)

8.1.2 Previous Work

New development in vector field visualization is related to the computation of
streaklines and streaksurfaces [Weinkauf & Theisel, 2010], the invention of new
integration geometry types, such as time surfaces [Krishnan et al., 2009] or by
[McLoughlin et al., 2009] on the improvement of algorithms to compute stream
and path surfaces .
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8.2 Framework Design and Implementation

Our earlier work includes the development of a streamline module for the com-
putation and rendering of streamlines. Later, a pathlines module was developed
mostly independently, only sharing some vector field interpolation methods. For
the streamline module, the computation part was separated from the rendering
of lines and it was further generalized to ease the implementation of geodesics in
higher dimensional space-times [Ritter, 2010], and the computation part of the
pathline module was inherited to compute the time surfaces [Bohara et al., 2010].
Besides a fast and simple Euler integration we had implemented the DOP853
integration for high accuracy [Hairer et al., 2000]. This is a Runge-Kutta (RK)
integration of 8th order using RK schemes of order 5 and 3 for error estimation
and adaptive step size control and provides dense output. “The performance of
this code, compared to methods of lower order, is impressive.” [Hairer et al., 2000]

8.2.1 Visualization Environment and Data Model

We use the VISH [Benger et al., 2007] visualization shell as our implementation
platform. VISH supports the concept of a fiber bundles data model [Benger, 2004],
which is a hierarchical data model structured in six levels. These levels are called
Bundle, Slice (time), Grid, Topology(Skeleton), Representation and Field. Fields
store the actual data arrays while the other levels are used similar to a directory
structure to organize the data. Datasets such as position, velocity or connectivity
information among points are stored in a Field. The collection of Skeletons which
hold data Fields in their coordinate Representation is a Grid object. The collection
of Grid objects over all time Slices is the Bundle of the dataset.

VISH uses a network structure to separate tasks in atomic entities, called
VISH -objects, which are connected by input and output connections. A pull model
is used updating using a separated control and data flow. Several levels of caching
are provided throughout the network updating process [Benger et al., 2009a].

8.2.2 The Integration Module

To compute and visualize the integration geometry the task is split in three parts:
definition of the seeding (emitter) geometry, integration based on a data field and
rendering. Each task is taken care of by a different module in the VISH network.

Here, we present the framework that provides a computational module based
on template specializations. Template programming allows to write flexible and
reusable code, without performance losses due to late binding or loose coupling.
The compiler directly inserts source code of template specializations dependent on
their template parameters, which can be highly optimized during compilation. The
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<class FieldType, class GeoType, class IPol><class FieldType, class GeoType> <class FieldType, class GeoType>

<FrontStreamline, tvector> <FrontStreamline, tvector> <FrontStreamline, tvector, 0..3>

IntegralHeart CoarseIntegrator

IntegralFace VObject (VISH)

AtomicDataBase

GridOperator FieldCollection AtomicIntegrator

<class FieldType, class GeoType, class IPol>
AtomicIntegrator

GridOperator FieldCollection AtomicIntegrator

FrontStreamline

Type Trait Type Trait Type Trait

bool update() = 0

bool update()  { ... }

Figure 8.2: Class organization for the integration framework. Classes illustrated
in dashed lines are template classes which define an interface but also provide
a default implementation. Classes illustrated in dotted lines are template traits
which only define an interface by empty functions. They have to be specialized
and implemented. Four classes have to be implemented, indicated by the bold
outline. The implementation of streamline integration is shown as an example.

overhead of function calls is not relevant in that context since it is removed during
compilation. See section (8.3.2) for a comparison of timings runtime measurements
between optimize versus debug compilation. Template programming provides a
programming language on its own “executed” at compile time [Veldhuizen, 1995]
[Furnish, 1998] [Vandevoorde & Josuttis, 2003].

Fig. 8.2 illustrates the main class relationships for the example of a streamline
integration. The four classes outlined in bold have to be customized for that pur-
pose: GridOperator, FieldCollection and AtomicIntegrator have to be spe-
cialized and an empty class defining a type has to be introduced. Here, this class
is called Streamline in Fig. 8.2.

We derive a class called IntegralFace from VObject and define all the in-
put and output connections necessary for a computation module. Derivation from
VObject makes a VISH network module. IntegralFace implements no additional
functionality. It provides the following input connections: input initial grid, in-
put base field, interpolation type of the base field (linear, cubic, analytic), inte-
gration type (Euler, Dop853), length of integration geometry (or their trajecto-
ries), step size and maximum steps. The integration geometry grid is output by
the module. From IntegralFace we derive the central computation class called
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Integrator

Input

OutPut

Figure 8.3: Any Grid object can define the seeding geometry and input to and
output from the integrator. Examples are a triangular surface, a uniform grid,
lines and points. A Grid may also hold data, for example scalar or vector field
data. The output Grid depends on the input Grid and is of the same type but
with an additional dimension.

IntegralHeart:

template <typename FieldType, typename IntGeoType>

class IntegralHeart : public IntegralFace

It implements the update() function used in the network updating process and
hosts the main integration loop. Tasks such as retrieving the initial geometry, the
data field and the user control parameters and outputting the integration geometry
are brought together here. The module handles all different kinds of input grids
and data fields by utilizing the fiber bundle library. A input grid can, for example,
be a point cloud, a surfaces or a connected curvilinear grid, as illustrated in Fig.
8.3. It is also possible to have additional data such as directional fields stored
in the emitter grid, if additional initial conditions besides positions are required.
Similarly, the field used in the integration can be of arbitrary type such as scalar,
vector or a tensor field specified in any topology or representation.

The two template parameters FieldType and IntGeoType describe the types
of the integration field and the type of the integration geometry. In the streamline
example the field type would be a vector field and the integration geometry the
empty class Streamline. The main computation loop utilized template type trait
classes for doing the integration, Fig. 8.4, illustrated by the dotted outlined classes
in Fig. 8.2. The traits define empty functions being called from IntegralHeart.
One additional template parameter is introduced: int InterpolationType. It
controls the choice of the interpolation scheme used in the integration field.
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The main loop uses two template trait classes, see Fig. 8.2: GridOperator and
CoarseIntegrator. The GridOperator

template <class FieldType, typename IntGeoType>

class GridOperator {...}

is responsible for the geometry that is created during the integration process and
has to be implemented for a specific type. Several functions may be provided in the
template specialization to control the geometry: prepare(), advance(), refine(),
store() and finalize(). The functions prepare() and finalize() allow initial
and final operation on the grid. The other functions are called in each call of the
main loop and are responsible for advancing, storing and refining the grid. Using
only Grid objects as function parameters allows maximum flexibility and power in
the functions to modify or create geometry. All topological information is available
in a Grid, which is necessary in the refine() function in case of doing adaptive
geometry refinement.

The CoarseIntegrator trait provides two functions to the main loop:

template <class FieldType, typename IntGeoType, int InterpolType>

class CoarseIntegrator {...}

advance() and extractLocalData(). The advance() function is responsible for
the integration in a coarse sense. It itself uses the trait AtomicIntegrator

template<typename FieldType, typename IntGeoType, int InterpolType>

class AtomicIntegrator {...}

which implements the integration on a low level per point basis. The Coarse-

Integrator advances a collection of points. The default template implementation
does a breadth-wise integration by advancing fronts. A depth-wise integration or
line-wise integration can be added by providing a different template specializa-
tion. The extractLocalData() function collects all data besides the vertex data
by again calling the according function from the AtomicIntegrator over a the
collection of vertices which utilizes the FieldInterpolator template, a fully im-
plemented template class that returns a linear or cubic interpolation value of a
given point in the field. The interpolator also can return an analytic value if a
formula for the data field available explicitly.

The advance() function of the CoarseIntegrator extracts data fields of the
current grid object into the so called

template <class FieldType, typename IntGeoType>

struct FieldCollection : public MemCore::ReferenceBase

<FieldCollection<FieldType,IntGeoType> >

{ ... } .
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<class FieldType, class GeoType, class IPol>
CoarseIntegrator

bool advance( G& CurrGrid, g NewGrid, time )
bool extractLocalData( G& Grid, time )

<class FieldType, class GeoType, class Ipol>
AtomicIntegrator

bool extractLocalData( FieldCollection )
bool doEuler( FieldCollection1..2, time )
void initDop853(...)
bool doDop853(...)

<class FieldType, class LineType>
IntegralHeart

override bool update( ... )
{
     while( ... )
     {    /* ... */
          GridOperator.advance( CurrGrid );
          CoarseIntegrator.advance( CurrGrid, NewGrid, time, ... );
          NewGrid = GridOperator.re�ne( CurrGrid );
          CoarseIntegrator.extractLocalData( NewGrid );
          GridOperator.store( ... );
          CurrGrid = NewGrid;
      }
      GridOperator.�nalize( ... );
}

<class FieldType, class GeoType>
GridOperator

G prepare( G& grid, size_estimate)
G advance( G& grid)
G re�ne( G& grid)
store( name, G& grid, time )
�nalize( name, G& g, time )

Figure 8.4: More detailed illustration of class functions. All functionality is in-
serted into the IntegralHeart’s update() function by the compiler which uses
the template trait functions of GridOperator and CoarseIntegrator. Reference
pointers are used when pointers are required. G is short for RefPtr<Grid>.

The field collection provides data necessary for integration on an array basis
used by the functions of the AtomicIntegrator. Thus, the atomic integration
operation need not to extract this data from the grid in every integration step.
AtomicIntegrator provides doEuler() and doDop853() functions to process every
points on the integration coarse.

The following subsections describe the implementation of four different inte-
gration geometries using the presented framework.

8.2.3 Streamline Implementation

To implement the streamline integration several classes are gathered in a sep-
arate cpp file. An empty class class FrontStreamline{}; is defined and the
GridOperator specialized:

template<> class GridOperator<tvector, FrontStreamline> {...}

where tvector is the type of the vector field. Its prepare() member function
retrieves the emitter grid and prepares a new integration geometry grid by copying
the vertices. The geometry will later be stored as a set of lines in the bundle
of the vector field. It also estimates the size of the data being computed and
reserves memory. The advance() just passes the given grid through without any
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operation. The refine() function also passes the grid through. Refinement will
by implemented in future. The store() function is an empty function. Nothing is
stored per time-step. Finally, the finalize() function stores the filled data fields
at the given time step into the bundle.

The FieldSelection specialization extracts std::vectors from the integra-
tion geometry grid and provides them to the AtomicIntegrator partial special-
ization:

template<int InterpolType>

class AtomicIntegrator<tvector, FrontStreamline, InterpolType>

: public AtomicDataBase {...};

Here, the doEuler() function is implemented which uses an index to access the
correct vertex and direction. These are retrieved from the Field- Collection

provided by the CoarseIntegrator. It computes and pushes the next vertex po-
sition and line connection into the FieldCollection. The extractLocalData()

function extracts the interpolated vector field data for the vertex positions previ-
ously computed by the integration function by utilizing the FieldInterpolator

template.
Finally, a VISH network module is provided by a template instantiation:

typedef IntegralHeart<tvector,FrontStreamline> FrontStreamlines;

Implementing streamline computation requires 350 lines of source code.

8.2.4 Pathlines Implementation

The pathline integration again requires a type class FrontPathline{}; and a
specialization of

template<> class GridOperator<tvector, FrontPathline> { ... };

The representation of a pathline differs from the representation of a streamline in
the fiber data bundle. For a pathline a vertex is stored as grid in different time
slices. The prepare() function also creates a new grid object and copies the vertex
data from the emitter grid. However, the advance() function now creates a new
grid object for each step of the integration front. The refinement() function is to
be implemented in future and just passes the grid though. The store() function
inserts the computed grid into the bundle for each integration front step. Here,
the finalize() function is an empty implementation. The FieldSelection again
extracts the array data from the grid object and provides array data.

The specialization of
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template<int InterpolType>

class AtomicIntegrator<tvector, FrontPathline, InterpolType>

: public AtomicDataBase {...};

implements the doEuler() function, using a provided time step value. It uses
direct array index access instead of using push backs (in the streamline case). The
extractLocalData() function interpolates the vector field and stores directions
at each vertex.

A VISH module is provided by the template instantiation:

typedef IntegralHeart<tvector,FrontPathline> FrontPathlines;

Pathline computation requires 250 lines of source code.

8.2.5 Material-Line Implementation

The pathline module can be reused for the material-line implementation. The fiber
bundle data stores topology information inside a Grid: A so called relative Repre-
sentation on the vertices in a Skeleton. The pathline module is extended, copying
this additional information in the GridOperators prepare() and advance() func-
tions. This was implemented for an arbitrary number of additional Skeletons on the
vertices using a Skeleton iterator. 50 additional lines are required in the framework
and 4 lines for the pathline implementation.

8.2.6 Time Surfaces

The computation of the time surface did not need any additional development
because the Skeleton iterator, implemented for material-lines, already copies the
topological surface connectivity data.

Figure 8.5: Images showing the streamlines [left] and the evolving time surfaces
[right], with a two sphere geometry as a seeding grid.
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8.3 Results

8.3.1 CFD Visualization of a Stirred Tank

Having the two computing modules implemented for streamline and pathline in-
tegration and having extended the modules providing the seeding geometries we
are able to visualize streamlines, pathlines, material-lines and time surfaces in a
uniform test grid and in a 2088 multi-block curvilinear dataset stemming from a
CFD simulation of a stirred tank. The curvilinear grid is comprised of 3.1 million
cells in total, with flow variables such as velocity and pressure measured at the
cell vertices [Benger et al., 2009c]. The integration module currently implemented
is explicit Euler. The figures show the results of the integration in the curvilinear
dataset. The computation was done for 50 time steps using SVN revision 2557
of VISH. The material-lines, time surfaces and pathlines in Fig. 8.6 and 8.7 are
rendered for every 5th time step. They are fading linearly in time, highlighting the
current state.

Figure 8.6: Image showing corresponding time surfaces overlapped on material
lines [right], both computed for 50 time steps.

8.3.2 Time Measurements

We did measurements of the computation time comparing our old implementations
and the new ones in a simple uniform grid based dataset and the stirred tank
data set. For testing we used a machine equipped with a six core Intel Xeon
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Figure 8.7: Images showing the material lines [left] and time surfaces with pathlines
overlapped [right], all computed for 50 time steps.

W3680@3.33GHz, 12MB L3, 6.4GT/s with 6GB of 1333MHz DDR3 SDRAM and
a NVIDIA Quadro FX 3800 1GB running gcc version 4.4.4 20100630 (Red Hat
4.4.4-10).

Imple- Data- Comp- Steps Step- N.- Spd- Spd-
mentaion set ilation Time Time Up Up

# [msec] [%] [-] [-]
stream old uni. debug 2704 0.19 100
stream old curvi. debug 6739 3.10 100
stream old uni. opt. 2704 0.03 16 6.3
stream old curvi. opt. 6739 1.40 45 2.2
stream new uni. debug 2600 0.19 100 1.0
stream new curvi. debug 6600 5.40 174 0.6
stream new uni. opt. 2600 0.03 16 6.3 1.0
stream new curvi. opt. 6600 2.60 84 2.1 0.5
path old uni. debug 2600 0.20 105
path old curvi. debug 6732 429.88 13867
path old uni. opt. 2600 0.03 16 6.7
path old curvi. opt. 6732.21 224.00 7226 1.9
path new uni. debug 2600 0.21 111 1.0
path new curvi. debug 6600 5.61 181 76.6
path new uni. opt. 2600 0.03 15 7.0 1.0
path new curvi. opt. 6600 2.61 84 2.1 85.8

The table gathers: Old and new stream and pathline using debug and optimized
compilation, number of integration steps, time per integration step, normalized-
time with respect to the old uniform and curvilinear grid streamline computation,
speedup by optimized compilation mode and speedup by the new implementation.

When comparing the timings of the old and the new integration in the uni-
form grid the measurements show no difference. The introduced overhead of the
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framework does not result in a longer computation time. In the curvilinear case of
streamlines the old computation is faster by a factor of about two. This has to be
investigated. However, the new curvilinear pathlines benefit a speedup of about
factor of 80 by making faster interpolation and point search algorithms available.

8.4 Conclusion

While the earlier version of integration modules were implemented independent of
each other with redundant computation code and time, we successfully designed
and implemented a framework based on template specializations that provides a
common computational module for different integral geometries. We introduced
the visualization of material lines with minimal programming effort: 350 lines for
streamlines, 250 lines for pathlines, 54 lines for material lines and none for time
surfaces.

8.5 Future Work

We will adapt our existing three and four dimensional geodesic tensor field in-
tegration code to the framework, enable DOP853 integration, introduce grid re-
finement during integration, introduce a module to extract a path-surface from
computed material lines and work on a thread-based parallelization on the CPU
using OpenMP [OpenMP Architecture Review Board, 2010].
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