Point Distribution Tensor Computation on Heterogeneous Distributed Systems

Ivan Grasso, Marcel Ritter, Biagio Cosenza, Werner Benger, Thomas Fahringer
University of Innsbruck, Austria

Overview

Point distribution tensor S:
- applied to point cloud data P_i
- describes local geometrical properties
- used to enhance visualization
+ enhance particle visualization
- used for other algorithms:
 + point classification of LiDAR laser scan data
 + eigenvector streamlines (power cable extraction)
- computationally expensive for big datasets (>500GB)

$$S(P_i) = \frac{1}{N} \sum_{K=1}^{N} \omega(|t_{ik}|, r)(t_{ik} \otimes t_{ik})$$

- P_i point of a point cloud
- N size of the neighborhood (number of points)
- ω weighting function
- t_{ik} vector $P_i - P_k$
- r neighborhood radius
- \otimes tensor product

GPU Implementation

The GPU implementation algorithm uses grid as a spatial data structure (spatial hashing). It comprises four steps:

1) for each particle a hash value is computed, i.e., the cell index where it is located
2) particles are sorted by hash; for this step an optimized bitonic sorting is utilized
3) the sorted list is used to compute the starting cell where the particle is located, running a thread for each particle, and performing scattered memory writes
4) tensor calculation: each particle searches the closest 27 grid cells from its location and it computes the tensor with each of the particles in these cells

Preliminary Results

We conducted our preliminary experiments with a small dataset of 1024 particles. Even for such a small amount of particles the GPU outperforms the performance of a quadcore CPU by 25%, showing its suitability for this kind of computation.

In the future we will extend our tests to bigger datasets trying different heterogeneous scheduling approaches. We will also explores different optimizations for different architectures including local memory for the GPU and vectorization for the CPU.

We will also tune our scheduling policy to support massive stream of particle sets in heterogeneous distributed systems.